Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacopuncture ; 26(4): 357-365, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38162470

RESUMO

Objectives: Since stroke is a serious health issue, novel therapeutic strategies are required. In a mouse model of ischemic stroke, this study analyzed the potential of electroacupuncture (EA) and tenuigenin (TE) to improve the efficacy of human mesenchymal stem cell (hMSC) transplantation. Methods: Middle cerebral artery occlusion (MCAO) with reperfusion was used to generate ischemic stroke. Forty-eight male C57BL/6 mice were randomly divided into five groups control, MCAO-operated, MCAO-EA, MCAO-TE, or MCAO + EA + TE. Subsequently, hMSCs were transplanted into the ischemic region and EA, TE, or the combination was administered. Behavior assessments and immunohistochemistry were conducted to evaluate motor and cognitive recovery and hMSCs survival, migration, and differentiation. Results: The combined treatment of EA and TE exhibited enhanced hMSCs survival, migration and differentiation into neural cell lineages while suppressing astrocyte formation. Immunohistochemistry demonstrated increased neurogenesis through hMSCs transplantation in the ischemic brain. Immediate behavioral improvements were not significantly different between groups, but there was a gradual recovery in motor and cognitive function over time. Conclusion: These findings highlight the potential of EA and TE co-treatment as a therapeutic strategy for ischemic stroke, opening avenues for further research to optimize treatment protocols and elucidate underlying mechanisms.

2.
Adv Sci (Weinh) ; 9(11): e2104629, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076161

RESUMO

Photobiomodulation (PBM) has received attention due to its potential for improving tissue function and enhancing regeneration in stroke. A lightweight, compact, and simple system of miniaturized electronic devices consisting of packaged light-emitting diodes (LEDs) that incorporates a flexible substrate for in vivo brain PBM in a mouse model is developed. Using this device platform, the preventive and therapeutic effects of PBM affixed to the exposed skull of mice in the photothrombosis and middle cerebral artery occlusion stroke model are evaluated. Among the wavelength range of 630, 850, and 940 nm LED array, the PBM with 630-nm LED array is proved to be the most effective for reducing the infarction volume and neurological impairment after ischemic stroke. Moreover, the PBM with 630 nm LED array remarkably improves the capability of spatial learning and memory in the chronic poststroke phase, attenuates AIM2 inflammasome activation and inflammasome-mediated pyroptosis, and modulates microglial polarization in the hippocampus and cortex 7 days following ischemic stroke. Thus, PBM may prevent tissue and functional damage in acute ischemic injury, thereby attenuating the development of cognitive impairment after stroke.


Assuntos
AVC Isquêmico , Terapia com Luz de Baixa Intensidade , Acidente Vascular Cerebral , Animais , Inflamassomos , Camundongos , Crânio
3.
Neural Regen Res ; 17(7): 1556-1565, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916441

RESUMO

Neural/glial antigen 2 (NG2)-expressing cells has multipotent stem cell activity under cerebral ischemia. Our study examined the effects of electroacupuncture (EA) therapy (2 Hz, 1 or 3 mA, 20 minutes) at the Sishencong acupoint on motor function after ischemic insult in the brain by investigating the rehabilitative potential of NG2-derived cells in a mouse model of ischemic stroke. EA stimulation alleviated motor deficits caused by ischemic stroke, and 1 mA EA stimulation was more efficacious than 3 mA EA stimulation or positive control treatment with edaravone, a free radical scavenger. The properties of NG2-expressing cells were altered with 1 mA EA stimulation, enhancing their survival in perilesional brain tissue via reduction of tumor necrosis factor alpha expression. EA stimulation robustly activated signaling pathways related to proliferation and survival of NG2-expressing cells and increased the expression of neurotrophic factors such as brain-derived neurotrophic factor, tumor growth factor beta, and neurotrophin 3. In the perilesional striatum, EA stimulation greatly increased the number of NG2-expressing cells double-positive for oligodendrocyte, endothelial cell, and microglia/macrophage markers (CC1, CD31, and CD68). EA therapy also greatly activated brain-derived neurotrophic factor/tropomyosin receptor kinase B and glycogen synthase kinase 3 beta signaling. Our results indicate that EA therapy may prevent functional loss at the perilesional site by enhancing survival and differentiation of NG2-expressing cells via the activation of brain-derived neurotrophic factor -induced signaling, subsequently ameliorating motor dysfunction. The animal experiments were approved by the Animal Ethics Committee of Pusan National University (approval Nos. PNU2019-2199 and PNU2019-2884) on April 8, 2019 and June 19, 2019.

4.
Life (Basel) ; 10(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066563

RESUMO

Electroacupuncture (EA) therapy via alternating current stimulation on the scalp over the motor cortex is used for the treatment of brain disorders. Perinatal hypoxia-ischemia (HI), a brain injury in newborns, leads to long-term neurologic complications. Here, we investigated whether EA could promote functional improvements and neurogenesis in a neonatal HI rat model. A neonatal HI rat model was induced by permanent ligation of the left carotid artery in postnatal day 7 pups. EA for neonatal HI rats was performed at 2 Hz (1, 3, or 5 mA; 20 min) from 4-6 weeks after birth. HI rats undergoing EA had improved motor and memory function, with the greatest improvement after 3 mA EA. The corpus callosum was significantly thicker and showed a significant increase in proliferating astrocytes in the 3 mA EA group. We observed proliferating cells and a greater number of newly developed neurons and astrocytes in the subventricular zone and dentate gyrus of the 3 mA EA group than in those of the HI group. These results suggest that EA promotes functional improvements following neonatal HI assault via the proliferation and differentiation of neural stem cells. This effect was the strongest after 3 mA EA, suggesting that this is the optimal treatment dose.

5.
J Gerontol A Biol Sci Med Sci ; 75(4): 631-639, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-30346494

RESUMO

Photobiomodulation using low-level light-emitting diode can be rapidly applied in neurological and physiological disorders safely and noninvasively. Photobiomodulation is effective for chronic diseases because of fewer side effects than drugs. Here we investigated the effects of photobiomodulation using light-emitting diode on amyloid plaques, gliosis, and neuronal loss to prevent and/or recover cognitive impairment, and optimal timing of photobiomodulation initiation for recovering cognitive function in a mouse model of Alzheimer's disease. 5XFAD mice were used as an Alzheimer's disease model. Animals receiving photobiomodulation treatment were divided into two groups: an early group starting photobiomodulation at 2 months of age (5XFAD+Early), and a late group starting photobiomodulation at 6 months of age (5XFAD+Delay). Both groups received photobiomodulation 20 minutes per session three times per week for 14 weeks. The Morris water maze, passive avoidance, and elevated plus maze tests were performed at 10 months of age. Immunohistochemistry and Western blot were performed after behavioral evaluation. The results showed that photobiomodulation treatment at early stages reduced amyloid accumulation, neuronal loss, and microgliosis and alleviated the cognitive dysfunction in 5XFAD mice, possibly by increasing insulin degrading enzyme related to amyloid-beta degradation. Photobiomodulation may be an excellent candidate for advanced preclinical Alzheimer's disease research.


Assuntos
Doença de Alzheimer/radioterapia , Terapia com Luz de Baixa Intensidade , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Aprendizagem da Esquiva/efeitos da radiação , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Cognição/efeitos da radiação , Modelos Animais de Doenças , Gliose/patologia , Gliose/prevenção & controle , Humanos , Lasers Semicondutores/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos da radiação , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Proteólise/efeitos da radiação
6.
J Gerontol A Biol Sci Med Sci ; 75(4): 712-721, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31644786

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neuron loss in the substantia nigra. However, specific sensory stimulation via electroacupuncture (EA) therapy may attenuate this loss by promoting the expression of endogenous neurotrophic factors in a manner similar to physical therapy. We investigated the potential protective effects of EA on dopaminergic neurons in a mouse model of PD and whether these effects are associated with the promotion of endogenous brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Mouse models of PD were generated using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine. Motor performance was assessed using behavioral tests, and Western blot experiments, enzyme-linked immunosorbent assays (ELISAs), and immunohistochemical assays were performed. In both mouse models, EA treatment ameliorated motor impairments and dopaminergic neuron loss; these changes were accompanied by increases in BDNF and GDNF. In the MPTP group, EA treatment improved motor dysfunction by attenuating dopaminergic neuron loss in the substantia nigra, similar to the effects of levodopa. EA treatment significantly upregulated BDNF and GDNF expression in both the substantia nigra and striatum. Moreover, EA treatment induced the expression of cAMP response element binding protein (CREB) as well as Akt and Pitx3 in dopaminergic neurons in the substantia nigra. However, levodopa treatment did not induce BDNF/GDNF activation or related signaling factors. Thus, EA therapy may exert protective effects on dopaminergic neurons by upregulating the expression of BDNF, GDNF, and related signaling factors, thereby improving motor function. Hence, EA may represent an effective adjuvant therapy for motor deficits in patients with PD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Eletroacupuntura , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Animais , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Degeneração Neural/terapia , Oxidopamina/toxicidade , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/terapia , Transdução de Sinais , Substância Negra/patologia , Substância Negra/fisiopatologia
7.
Oxid Med Cell Longev ; 2019: 4379732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885791

RESUMO

Stroke is one of the major causes of death and long-term disability worldwide; the associated breakdown of the blood-brain barrier (BBB) aggravates ischemic brain damage. Accordingly, many medicinal herbs and formulas have been used to treat stroke-related symptoms. In this study, we selected two Korean herbal medicine formulas, Weisheng-tang and Tongxuewan, through Dongeuibogam text-mining analysis, and evaluated their protective effect on BBB disruption and brain damage in stroke. Ischemic brain damage was induced in mice by photothrombotic cortical ischemia. The infarct volume, brain edema, neurological deficits, and motor function 24 h after ischemic injury were analyzed. We investigated BBB breakdown by measuring Evans blue extravasation in addition to endothelial cells, tight junction proteins, protease-activated receptor-1 (PAR-1), and matrix metalloproteinase-9 (MMP-9) using immunofluorescence staining and confocal microscopy. Pretreatment with Weisheng-tang significantly reduced infarct volume and edema and improved neurological and motor functions; however, Tongxuewan did not. In addition, Weisheng-tang decreased brain infarction and edema and recovered neurological and motor deficit in a dose-dependent manner (30, 100, and 300 mg/kg). Weisheng-tang pretreatment resulted in significantly less BBB damage and higher brain microvasculature after focal cerebral ischemia. Tight junction proteins, such as zonula occludens-1 (ZO-1) and claudin-5, were preserved in Weisheng-tang-pretreated mice. Moreover, the ischemic brain in these mice showed suppressed PAR-1 and MMP-9 expression. In conclusion, our findings show that Weisheng-tang, which was selected through literature analysis but has not previously been used as a stroke remedy, exerts protective effects against ischemic brain damage and suggest its possible application for potential stroke patients, especially in the elderly.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Plantas Medicinais/química , Acidente Vascular Cerebral/tratamento farmacológico , Doença Aguda , Animais , Humanos , Masculino , Camundongos
8.
Artigo em Inglês | MEDLINE | ID: mdl-31275404

RESUMO

OBJECTIVE: Several attempts have been made to reduce the harmful side effects and increase the efficacy of current drugs used to treat attention-deficit/hyperactivity disorder (ADHD). Many articles have studied medicinal herbs as an effective supplement in treating ADHD. In a similar manner, this study provides foundational data to identify herbs that are potentially effective in treating ADHD by text mining of Donguibogam, which is a comprehensive summation of the important traditional principles and practices of Korean medicine. METHODS: Text mining was performed for 3833 herbal prescriptions and 1108 medicinal herbs comprising prescriptions listed in Donguibogam. The first step was frequency analysis followed by chi-square test, which is a statistical hypothesis test. RESULTS AND CONCLUSIONS: Twelve medicinal herbs were selected for each ADHD subtype: hyperactivity ADHD type (ADHD-PHI) and attention-deficit ADHD type (ADHD-PI). Compared to previous research on traditional literature, a newer and more efficient methodology of selecting herbal medicines was developed in this process.

9.
Mol Neurobiol ; 56(1): 157-173, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29682700

RESUMO

We prepared and grafted tropomyosin receptor kinase B (TrkB) gene-transfected mesenchymal stem cells (TrkB-MSCs) into the ischemic penumbra and investigated whether electroacupuncture (EA) treatment could promote functional recovery from ischemic stroke. For the behavioral test, TrkB-MSCs+EA resulted in significantly improved motor function compared to that obtained with MSCs+EA or TrkB-MSCs alone. At 30 days after middle cerebral artery occlusion (MCAO), the largest number of grafted MSCs was detected in the TrkB-MSC+EA group. Some differentiation into immature neuroblasts and astrocytes was detected; however, only a few mature neuron-like cells were found. Compared to other treatments, TrkB-MSCs+EA upregulated the expression of mature brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT4) and induced the activation of TrkB receptor and its transcription factor cAMP response element-binding protein (CREB). At 60 days after MCAO, EA highly promoted the differentiation of TrkB-MSCs into mature neuron-like cells compared to the effect in MSCs. A selective TrkB antagonist, ANA-12, reverted the effect of TrkB-MSCs+EA in motor function recovery and survival of grafted MSCs. Our results suggest that EA combined with grafted TrkB-MSCs promotes the expression of BDNF and NT4, induces the differentiation of TrkB-MSCs, and improves motor function. TrkB-MSCs could serve as effective therapeutic agents for ischemic stroke if used in combination with BDNF/NT4-inducing therapeutic approaches.


Assuntos
Isquemia Encefálica/terapia , Eletroacupuntura , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Receptor trkB/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Azepinas/farmacologia , Benzamidas/farmacologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
10.
Cancer Lett ; 443: 25-33, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30503550

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain tumor, which remains incurable. Plant extracts are a potential source of potent anticancer medicines. In this study, we investigated the effect of isolinderalactone from Lindera aggregata on tumor growth using U-87 human glioblastoma cells. Treatment with isolinderalactone inhibited cell viability and promoted apoptotic cell death. In addition, intraperitoneal injection of isolinderalactone significantly inhibited tumor growth in a human GBM xenograft mouse model. To identify the proteins involved in the induction of apoptosis in isolinderalactone-treated cells, we performed a human apoptosis proteome array analysis and western blotting. Isolinderalactone suppressed the expression of B-cell lymphoma 2 (BCL-2), as well as of survivin and X-linked inhibitor of apoptosis protein (XIAP), known as apoptosis inhibitors, and increased the level of cleaved caspase-3. In addition, isolinderalactone treatment increased cleaved poly(ADP-ribose) polymerase (PARP) and DNA damage. In xenograft tumor tissues, we observed high immunofluorescence of cleaved caspase-3 and TUNEL in isolinderalactone-treated group. Taken together, isolinderalactone enhances U-87 GBM cell apoptosis in vitro and in vivo and retards tumor growth, suggesting that isolinderalactone may be a potential candidate for anti-glioblastoma drug development.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Injeções Intraperitoneais , Lindera/química , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sesquiterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Phytomedicine ; 51: 151-161, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466612

RESUMO

BACKGROUND: Some traditional Oriental herbal medicines, such as Acorus tatarinowii and Acorus gramineus, produce beneficial effects for cognition enhancement. An active compound in rhizomes and the bark of these plants is α-asarone. PURPOSE: This study investigated the effects of α-asarone on the proliferation and differentiation of neural progenitor cells (NPCs) in a primary culture and a murine model of ischemic stroke. METHODS: NPCs were isolated from mouse fetal cerebral cortices on embryonic day 15, and all experiments were performed using passage 3 NPCs. We utilized a cell counting kit-8 assay, flow cytometry, western blot, and immunohistochemical analysis to assess proliferation and differentiation of NPCs and employed α-asarone in NPC transplanted ischemic stroke mice to evaluate stroke-related functional recovery using behavioral and immunohistochemical analysis. RESULT: Treatment with 1 µM, 3 µM, or 10 µM α-asarone induced significant NPC proliferation compared to vehicle treatment. Induced NPCs expressed the neuronal marker neuronal nuclei (NeuN) or the astrocyte marker S100 calcium-binding protein B (S100ß). Both immunohistochemistry and flow cytometry revealed that treatment with α-asarone increased the number of NeuN-immunoreactive cells and decreased the number of S100ß-immunoreactive cells. Treatment with α-asarone also increased the expression of ß-catenin, cyclin D1, and phosphorylated extracellular signal-regulated kinase (ERK) compared to vehicle treatment. In a murine model of ischemic stroke, treatment with α-asarone and transplanted NPCs alleviated stroke-related functional impairments. The corner and rotarod test results revealed that treatment with α-asarone in the NPC transplanted group had greater-than-additive effects on sensorimotor function and motor balance. Moreover, α-asarone treatment promoted the differentiation of transplanted NPCs into NeuN-, glial fibrillary acidic protein (GFAP)-, platelet-derived growth factor-α (PDGFR-α)-, and 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-immunoreactive cells. CONCLUSION: α-asarone may promote NPC proliferation and differentiation into neuron-lineage cells by activating ß-catenin, cyclin D1, and ERK. Moreover, α-asarone treatment facilitated neurofunctional recovery after NPC transplantation in a murine model of ischemic stroke. Therefore, α-asarone is a potential adjunct treatment to NPC therapy for functional restoration after brain injuries such as ischemic stroke.


Assuntos
Anisóis/farmacologia , Isquemia Encefálica/terapia , Células-Tronco Neurais/transplante , Acidente Vascular Cerebral/terapia , Acorus/química , Derivados de Alilbenzenos , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Diferenciação Celular , Ciclina D1/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , beta Catenina/metabolismo
12.
J Altern Complement Med ; 24(7): 733-740, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29583014

RESUMO

BACKGROUND: Dongeuibogam (DongYiBaoGian), one of the most important books in Korean medicine, comprises a comprehensive summary of all traditional medicines of North-East Asia before the 17th century. This medicinal literature was mined to establish a list of candidate herbs to treat Parkinson-related rigidity. METHODS: A systematic search for terms describing Parkinson-related rigidity and candidate prescriptions for the treatment of Parkinson-related rigidity in the Dongeuibogam was performed. A high-frequency medicinal herb combination group and candidates for the treatment of Parkinson-related rigidity were also selected through an analysis of medicinal herb combination frequencies. The existing literature pertaining to the potential effects of candidate herbs for Parkinson-related rigidity was reviewed. RESULTS AND CONCLUSIONS: Ten medicinal herb candidates for the treatment of Parkinson-related rigidity were selected, and their respective precedent studies were analyzed.


Assuntos
Mineração de Dados , Medicina Tradicional Coreana , Rigidez Muscular/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Humanos
13.
Oxid Med Cell Longev ; 2018: 2479602, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599893

RESUMO

AIM: Although stroke is among the leading causes of death and long-term disability, there are few effective treatments for limiting the severity of neurological sequelae. We evaluated the effects of 29 medicinal herbs listed in the Pung chapter of the 17th century Korean medical text Dongui Bogam on stroke symptoms in a mouse model of cerebral ischemia. METHODS: Focal cerebral ischemia was induced via photothrombosis. Infarct volume, brain edema, and neurological deficits were evaluated. Immunofluorescence staining for tight junction proteins and aquaporin 4 (AQP4) was performed following ischemic injury. RESULTS: Based on our initial findings, we examined the effects of two prescriptions in which the candidate herbs comprised more than 60% of the total formula: Shuanghe-tang and Zengsunsiwu-tang. Pretreatment with Shuanghe-tang significantly reduced infarct volume, decreased blood-brain barrier (BBB) breakdown, attenuated edema, and improved neurological and motor functions in a dose-dependent manner (30, 100, and 300 mg/kg), while no such effects were observed in mice pretreated with Zengsunsiwu-tang. Immunohistochemical analysis revealed significant increases in ipsilateral occludin and zonula occludens 1 (ZO-1) expression in Shuanghe-tang-pretreated mice, as well as increased AQP4 immunofluorescence. CONCLUSIONS: These results indicate that Shuanghe-tang may protect against brain injury and promote recovery of neurological function following ischemia.


Assuntos
Isquemia Encefálica/terapia , Edema/terapia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Edema/patologia , Humanos , Masculino , Camundongos , Extratos Vegetais/farmacologia , Acidente Vascular Cerebral/patologia
14.
Biomed Res Int ; 2018: 8638294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568769

RESUMO

AIM: Neonatal hypoxic-ischemia (HI) due to insufficient oxygen supply and blood flow during the prenatal and postnatal periods can cause cerebral palsy, a serious developmental condition. The purpose of this study was to investigate the efficacy of combining constraint-induced movement therapy (CIMT) and electroacupuncture to treat rat neonatal HI brain injury. METHODS: The left common carotid arteries of postnatal day 7 rats were ligated to induce HI brain injury, and the neonates were kept in a hypoxia chamber containing 8% oxygen for 2 hrs. Electroacupuncture at Baihui (GV 20) and Zusanli (ST 36) was performed concurrently with CIMT 3 weeks after HI induction for 4 weeks. RESULTS: Motor asymmetry after HI was significantly improved in the CIMT and electroacupuncture combination group, but HI lesion size was not improved. The combination of CIMT and electroacupuncture after HI injury increases NeuN and decreases GFAP levels in the cerebral cortex, suggesting that this combination treatment inversely regulates neurons and astrocytes. In addition, the combination treatment group reduced the level of cleaved caspase-3, a crucial mediator of apoptosis, in the cortex. CONCLUSIONS: Our findings indicate that a combination of CIMT and electroacupuncture is an effective method to treat hemiplegia due to neonatal HI brain injury.


Assuntos
Lesões Encefálicas/terapia , Eletroacupuntura/métodos , Hipóxia-Isquemia Encefálica/terapia , Hipóxia/terapia , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Humanos , Hipóxia/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
15.
Sci Rep ; 8(1): 2044, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391466

RESUMO

The beneficial effects of mesenchymal stem cells (MSCs) and electroacupuncture (EA) on neurogenesis and related trophic factors remain unclear. Bone marrow MSCs (mBMSC) were transplanted into the striatum of mice with middle cerebral artery occlusion (MCAO), and EA stimulation was applied at two acupoints, Baihui and Dazhui. EA treatment significantly improved motor function, and a synergistic effect of combined mBMSC and EA treatment was observed. Combined mBMSC and EA treatment reduced prominent atrophic changes in the striatum and led to proliferation of neural progenitor cells in the subventricular zone (SVZ) and the surrounding areas of the striatum (SVZ + striatum) of MCAO mice. The mBMSC and EA treatment markedly enhanced mature brain-derived neurotrophic factor (mBDNF) expression in the SVZ + striatum and hippocampus of mice with MCAO, and combined treatment enhanced neurotrophin-4 (NT4) expression. The number of mBDNF- and NT4-positive neurons in the SVZ + striatum and hippocampus increased following EA treatment. Combined treatment led to an increase in the expression levels of phosphorylated cAMP response element binding protein in the neuroblasts of the striatum. Our results indicate that combined MSC and EA treatment may lead to a better therapeutic effect via co-regulation of neurotrophic factors in the brain, by regulating neurogenesis more than single therapy.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Eletroacupuntura , Infarto da Artéria Cerebral Média/terapia , Transplante de Células-Tronco Mesenquimais , Fatores de Crescimento Neural/metabolismo , Neurogênese , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética
16.
Exp Neurol ; 300: 222-231, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29199131

RESUMO

We investigated whether electroacupuncture (EA) and treadmill (TM) exercise improve behaviors related to motor and memory dysfunction in a cerebral palsy-like rat model via activation of oligodendrogenesis. A neonatal hypoxia-ischemia model was created using Sprague-Dawley rats (P7), and these underwent EA stimulation and treadmill training from 3 to 5weeks after hypoxia-ischemia induction. EA treatment was delivered via electrical stimulation (2Hz, 1mA) at two acupoints, Baihui (GV20) and Zusanli (ST36). Behavioral tests showed that EA alleviated motor dysfunction caused by hypoxia-ischemia on a rotarod test, and TM exercise alleviated motor and memory dysfunction seen on cylinder and passive avoidance tests. Combined therapy with EA and TM exercise showed synergistic effects on the cylinder, rotarod, and catwalk tests. TM exercise significantly restored corpus callosum thickness, and combined therapy with EA and TM restored myelin basic protein (MBP) levels in this region. While EA stimulation only increased activation of cAMP-response element binging protein (CREB) in oligodendrocytes of the corpus callosum, TM exercise increased newly generated oligodendrocyte progenitor cells or oligodendrocytes via activation of CREB. Synergistic effects on oligodendrogenesis were also observed by the combined therapy. Furthermore, the combined therapy induced mature brain-derived neurotrophic factor (BDNF) expression in the cerebral cortex. These results demonstrate that combined therapy with EA and TM exercise may restore myelin components following neonatal hypoxia-ischemia via upregulation of oligodendrogenesis involving CREB/BDNF signaling, which subsequently improves motor and memory function. Therefore, combined therapy with EA and TM exercise offers another treatment option for functional recovery from injuries caused by neonatal hypoxia-ischemia, such as cerebral palsy.


Assuntos
Terapia Combinada/métodos , Doenças Desmielinizantes/terapia , Eletroacupuntura/métodos , Teste de Esforço/métodos , Hipóxia-Isquemia Encefálica/terapia , Oligodendroglia/fisiologia , Animais , Animais Recém-Nascidos , Proliferação de Células/fisiologia , Corpo Caloso/citologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
17.
Exp Ther Med ; 13(5): 2134-2142, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28565820

RESUMO

Jiawei Shenqi-wan (JSQW), which comprises Shenqi-wan and two additional medicinal herbs, has been widely used for the treatment of various growth impairments, including cerebral palsy. In the present study, JSQW was administered to hypoxic-ischemic Sprague-Dawley rats that underwent treadmill training from 4-7 weeks of age to examine the beneficial effects of combined JSQW and treadmill therapy. Behavioral examinations were performed and a significant improvement in cylinder test performance was observed in rats treated with treadmill training compared with hypoxic-ischemia rats (P<0.05), as well as a significant improvement in passive avoidance test performance for rats treated with JSQW (P<0.05). The thickness of the corpus callosum and the integrated optical density (IOD) of myelin basic protein (MBP) were significantly increased by treatment with treadmill therapy alone (P<0.01 and P<0.001, respectively) and treatment with both JSQW and treadmill significantly increased the IOD of MBP compared with hypoxic-ischemia rats (P<0.001). Western blot analysis revealed that the expression of neuronal nuclei (NeuN) and doublecortin (Dcx) significantly decreased (P<0.001 and P<0.05, respectively) and MBP expression markedly decreased in the ipsilateral subventricular zone of hypoxic-ischemic rats compared with the control group; however, the expression of NeuN was significantly recovered by treatment with both JSQW and treadmill training (P<0.05). Furthermore, Dcx expression was significantly recovered by treatment with JSQW (P<0.05), and MBP expression was significantly restored by treatment with treadmill training (P<0.01). In the immunohistochemical analyses, a significant increase in the number of bromodeoxyuridine (BrdU) positive cells in this region was observed in treadmill-treated rats (P<0.05), whereas significant increases in the number of Brdu/Dcx or NeuN or glial fibrillary acidic protein double-positive cells were observed only in the group co-treated with JSQW and treadmill (P<0.01, P<0.05 and P<0.001, respectively). These results suggest that JSQW and treadmill training may contribute to behavior recovery following hypoxic-ischemia, and JSQW treatment was particularly effective in promoting memory function via enhancing the differentiation of neuronal progenitor cells. The results of the present study therefore suggest that JSQW may provide an additional treatment option for functional recovery with treadmill training in cerebral palsy.

18.
Int J Mol Med ; 39(6): 1393-1402, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28487967

RESUMO

In the present study, we investigated whether treadmill training and electroacupuncture (EA) have autonomous or synergistic beneficial effects on deficits caused by neonatal hypoxia­ischemia in Sprague-Dawley rats. For this purpose, rats subjected to hypoxia-ischemia underwent treadmill training and EA stimulation from 4 to 8 weeks of age. Conventional EA (CEA) and scalp EA (SEA) were delivered by electrical stimulation (2 Hz, 1 mA) at traditional acupoints and at the scalp to the primary motor area, respectively. In the behavioral examination, markedly improved performances in the rotarod test were observed in the rats that underwent treadmill exercise, and in the rats that underwent treadmill exercise and CEA compared to the untreated rats subjected to hypoxia-ischemia. An improvement was also observed in the passive avoidance test in the rats that underwent treadmill training and EA. As shown by western blot analysis, the expression levels of neuronal nuclei (NeuN), 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein (MBP) exhibited a significant decrease in the contralateral subventricular zone (SVZ) of the rats subjected to hypoxia­ischemia compared to the controls; however, these expression levels increased following treadmill exercise and EA stimulation. As shown by immunohistochemical analyses, the thickness of the corpus callosum and the integrated optical density (IOD) of MBP were significantly increased in the rats subjected to treadmill exercise and EA compared to the untreated rats subjected to hypoxiaa-ischemia. The synergistic effects of treadmill training and EA were also observed in the protein levels and IOD of MBP. A marked increase in the number of bromodeoxyuridine (BrdU)- and BrdU/NeuN-positive cells in the contralateral SVZ was also observed in the rats that underwent treadmill training and EA; the number of BrdU-positive cells was synergistically affected by treadmill training and EA. These results suggest that treadmill training and EA stimulation contribute to the enhancement of behavioral recovery following hypoxia-ischemia via the upregulation of myelin components and neurogenesis. Thus, treatment with EA stimulation, as well as treadmill training offers another treatment option to promote functional recovery in cerebral palsy.


Assuntos
Isquemia Encefálica/terapia , Eletroacupuntura , Hipóxia/terapia , Condicionamento Físico Animal , Animais , Animais Recém-Nascidos , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Ventrículos Laterais/patologia , Ventrículos Laterais/fisiopatologia , Bainha de Mielina/patologia , Neurogênese , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
19.
J Biophotonics ; 10(12): 1761-1771, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28464523

RESUMO

We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU+ ) in the ischemic brain, and significant increases in BrdU+ /GFAP+ , BrdU+ /DCX+ , BrdU+ /NeuN+ , and CD31+ cells in the subacute LED-T group. However, the BrdU+ /Iba-1+ cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia.


Assuntos
Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Fototerapia/instrumentação , Recuperação de Função Fisiológica/efeitos da radiação , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Astrócitos/patologia , Astrócitos/efeitos da radiação , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Proteína Duplacortina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Microglia/efeitos da radiação , Neurônios/patologia , Neurônios/efeitos da radiação , Fatores de Tempo
20.
Biochem Pharmacol ; 141: 132-142, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461125

RESUMO

Acupuncture is one of the main healing arts in Oriental medicine. It has long been used in East Asian countries, including Korea and China, and is thought to be an effective alternative treatment for various neurological diseases. The therapeutic effects of acupuncture come from inserting a needle at specific acupoints on the body surface, with subsequent delivery of stimulation via manual rotation or electric pulses (electroacupuncture, EA). In various neurological disease models, peripheral nerve stimulation using acupuncture or EA may have protective effects on neural tissues by increasing expression of neurotrophic factors (NTFs), such as brain-derived neurotrophic factor and glial-derived neurotrophic factor, in the central nervous system, especially the brain. In addition, acupuncture may contribute to recovery from functional impairments following brain damage by encouraging neural stem cell proliferation, which is active at the initial stage of injury, and by further facilitating differentiation. Hence, acupuncture may act as a stimulator activating peripheral nerves at specific acupoints and inducing the expression of various NTFs in the brain. Subsequently, NTFs induced by this treatment trigger autocrine or paracrine signaling, which stimulates adult neurogenesis, thereby exerting therapeutic effects on functional impairments in neurological diseases. Acupuncture may offer an alternative treatment that promotes adult neurogenesis through the expression of NTFs in the brain. It may also have synergistic effects when combined with pharmacological interventions, again facilitating neurogenesis. This review examines recent studies concerning the effects of acupuncture and EA on adult neurogenesis associated with NTF expression in neurological diseases, in particular stroke, Alzheimer's disease, and Parkinson's disease.


Assuntos
Terapia por Acupuntura/métodos , Fatores de Crescimento Neural/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/terapia , Neurogênese/fisiologia , Animais , Humanos , Transdução de Sinais/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA