Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0012123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966243

RESUMO

IMPORTANCE: Even though studying on the possible involvement of extracellular vesicles (EVs) in host-microbe interactions, how these relationships mediate host physiology has not clarified yet. Our current findings provide insights into the encouraging benefits of dietary source-derived EVs and microRNAs (miRNAs) on organic acid production and ultimately stimulating gut microbiome for human health, suggesting that supplementation of dietary colostrum EVs and miRNAs is a novel preventive strategy for the treatment of inflammatory bowel disease.


Assuntos
Colite , Vesículas Extracelulares , MicroRNAs , Feminino , Gravidez , Humanos , Animais , Bovinos , MicroRNAs/genética , Ácido 3-Hidroxibutírico , Akkermansia , Colostro , Colite/induzido quimicamente
2.
Front Microbiol ; 14: 1139386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950168

RESUMO

Korean red ginseng has been widely used as an herbal medicine. Red ginseng dietary fiber (RGDF) is a residue of the processed ginseng product but still contains bioactive constituents that can be applied as prebiotics. In this study, we evaluated changes on fermentation profiles and probiotic properties of strains that belong to family Lactobacillaceae with RGDF supplementation. Metabolomic analyses were performed to understand specific mechanisms on the metabolic alteration by RGDF and to discover novel bioactive compounds secreted by the RGDF-supplemented probiotic strain. RGDF supplementation promoted short-chain fatty acid (SCFA) production, carbon source utilization, and gut epithelial adhesion of Lactiplantibacillus plantarum and inhibited attachment of enteropathogens. Intracellular and extracellular metabolome analyses revealed that RGDF induced metabolic alteration, especially associated with central carbon metabolism, and produced RGDF-specific metabolites secreted by L. plantarum, respectively. Specifically, L. plantarum showed decreases in intracellular metabolites of oleic acid, nicotinic acid, uracil, and glyceric acid, while extracellular secretion of several metabolites including oleic acid, 2-hydroxybutanoic acid, hexanol, and butyl acetate increased. RGDF supplementation had distinct effects on L. plantarum metabolism compared with fructooligosaccharide supplementation. These findings present potential applications of RGDF as prebiotics and bioactive compounds produced by RGDF-supplemented L. plantarum as novel postbiotic metabolites for human disease prevention and treatment.

3.
Proc Natl Acad Sci U S A ; 119(33): e2117904119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939684

RESUMO

Many urinary tract infections (UTIs) are recurrent because uropathogens persist within the bladder epithelial cells (BECs) for extended periods between bouts of infection. Because persistent uropathogens are intracellular, they are often refractive to antibiotic treatment. The recent discovery of endogenous Lactobacillus spp. in the bladders of healthy humans raised the question of whether these endogenous bacteria directly or indirectly impact intracellular bacterial burden in the bladder. Here, we report that in contrast to healthy women, female patients experiencing recurrent UTIs have a bladder population of Lactobacilli that is markedly reduced. Exposing infected human BECs to L. crispatus in vitro markedly reduced the intracellular uropathogenic Escherichia coli (UPEC) load. The adherence of Lactobacilli to BECs was found to result in increased type I interferon (IFN) production, which in turn enhanced the expression of cathepsin D within lysosomes harboring UPECs. This lysosomal cathepsin D-mediated UPEC killing was diminished in germ-free mice and type I IFN receptor-deficient mice. Secreted metabolites of L. crispatus seemed to be responsible for the increased expression of type I IFN in human BECs. Intravesicular administration of Lactobacilli into UPEC-infected murine bladders markedly reduced their intracellular bacterial load suggesting that components of the endogenous microflora can have therapeutic effects against UTIs.


Assuntos
Antibiose , Infecções por Escherichia coli , Interferon Tipo I , Lactobacillus crispatus , Bexiga Urinária , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Terapia Biológica , Catepsina D/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Feminino , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Lactobacillus crispatus/fisiologia , Masculino , Camundongos , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Infecções Urinárias/terapia , Escherichia coli Uropatogênica/crescimento & desenvolvimento
4.
J Microbiol Biotechnol ; 32(6): 776-782, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35586929

RESUMO

Corn-soybean meal diets are commonly used in the pork industry as a primary source of energy and protein. However, such a diet generally contains non-starch polysaccharides (NSPs) which present a challenge in finding ways to improve their availability and digestibility. Dietary multi-carbohydrases (MCs) have been proposed as an efficient approach to utilize NSPs, and can result in improved growth performance and host intestinal fitness. In this study, we evaluated the effects of MC in lactation diets on gut microbiota composition of lactating sows and their litters. The experimental design contained two dietary treatments, a diet based on corn-soybean meal (CON), and CON supplemented with 0.01% multigrain carbohydrases (MCs). Sow and piglet fecal samples were collected on days 7 and 28 after farrowing. Based on the results from 16S rRNA gene amplicon sequencing, MC led to changes in species diversity and altered the microbial compositions in lactating sows and their piglets. Specifically, the MC treatment induced an increase in the proportions of Lactobacillus in piglets. Clostridium and Spirochaetaceae showed a significantly reduced proportion in MC-treated sows at day 28. Our results support the beneficial effects of dietary carbohydrases and their link with improved production due to better host fitness outcomes and gut microbiota composition.


Assuntos
Microbioma Gastrointestinal , Lactação , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Feminino , Glicosídeo Hidrolases , RNA Ribossômico 16S/genética , Glycine max , Suínos
5.
Birth Defects Res ; 111(19): 1520-1534, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31518072

RESUMO

BACKGROUND: Periconceptional intake of supplemental folic acid can reduce the incidence of neural tube defects by as much as 70%, but the mechanisms by which folic acid supports cellular processes during neural tube closure are unknown. The mitochondrial 10-formyl-tetrahydrofolate synthetase MTHFD1L catalyzes production of formate, thus generating one-carbon units for cytoplasmic processes. Deletion of Mthfd1l causes embryonic lethality, developmental delay, and neural tube defects in mice. METHODS: To investigate the role of mitochondrial one-carbon metabolism during cranial neural tube closure, we have analyzed cellular morphology and function in neural tissues in Mthfd1l knockout embryos. RESULTS: The head mesenchyme showed significantly lower cellular density in Mthfd1l nullizygous embryos compared to wildtype embryos during the process of neural tube closure. Apoptosis and neural crest cell specification were not affected by deletion of Mthfd1l. Sections from the cranial region of Mthfd1l knockout embryos exhibited decreased cellular proliferation, but only after completion of neural tube closure. Supplementation of pregnant dams with formate improved mesenchymal density and corrected cell proliferation in the nullizygous embryos. CONCLUSIONS: Deletion of Mthfd1l causes decreased density in the cranial mesenchyme and this defect is improved with formate supplementation. This study reveals a mechanistic link between folate-dependent mitochondrially produced formate, head mesenchyme formation and neural tube defects.


Assuntos
Formiato-Tetra-Hidrofolato Ligase/genética , Meteniltetra-Hidrofolato Cicloidrolase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Enzimas Multifuncionais/genética , Defeitos do Tubo Neural/genética , Animais , Embrião de Mamíferos/metabolismo , Feminino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Formiatos/metabolismo , Masculino , Mesoderma/metabolismo , Meteniltetra-Hidrofolato Cicloidrolase/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Enzimas Multifuncionais/metabolismo , Crista Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Neurulação , Deleção de Sequência
6.
J Biol Chem ; 293(16): 5821-5833, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29483189

RESUMO

One-carbon (1C) metabolism is a universal folate-dependent pathway essential for de novo purine and thymidylate synthesis, amino acid interconversion, universal methyl-donor production, and regeneration of redox cofactors. Homozygous deletion of the 1C pathway gene Mthfd1l encoding methylenetetrahydrofolate dehydrogenase (NADP+-dependent) 1-like, which catalyzes mitochondrial formate production from 10-formyltetrahydrofolate, results in 100% penetrant embryonic neural tube defects (NTDs), underscoring the central role of mitochondrially derived formate in embryonic development and providing a mechanistic link between folate and NTDs. However, the specific metabolic processes that are perturbed by Mthfd1l deletion are not known. Here, we performed untargeted metabolomics on whole Mthfd1l-null and wildtype mouse embryos in combination with isotope tracer analysis in mouse embryonic fibroblast (MEF) cell lines to identify Mthfd1l deletion-induced disruptions in 1C metabolism, glycolysis, and the TCA cycle. We found that maternal formate supplementation largely corrects these disruptions in Mthfd1l-null embryos. Serine tracer experiments revealed that Mthfd1l-null MEFs have altered methionine synthesis, indicating that Mthfd1l deletion impairs the methyl cycle. Supplementation of Mthfd1l-null MEFs with formate, hypoxanthine, or combined hypoxanthine and thymidine restored their growth to wildtype levels. Thymidine addition alone was ineffective, suggesting a purine synthesis defect in Mthfd1l-null MEFs. Tracer experiments also revealed lower proportions of labeled hypoxanthine and inosine monophosphate in Mthfd1l-null than in wildtype MEFs, suggesting that Mthfd1l deletion results in increased reliance on the purine salvage pathway. These results indicate that disruptions of mitochondrial 1C metabolism have wide-ranging consequences for many metabolic processes, including those that may not directly interact with 1C metabolism.


Assuntos
Aminoidrolases/genética , Metabolismo Energético , Formiato-Tetra-Hidrofolato Ligase/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Redes e Vias Metabólicas , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Mitocôndrias/metabolismo , Complexos Multienzimáticos/genética , Defeitos do Tubo Neural/genética , Aminoidrolases/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Ácido Fólico/genética , Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Formiatos/metabolismo , Glicólise , Metaboloma , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Complexos Multienzimáticos/metabolismo , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA