Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 38(12): 4011-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20215434

RESUMO

Yin Yang 1 (YY1) is a critical transcription factor controlling cell proliferation, development and DNA damage responses. Retrotranspositions have independently generated additional YY family members in multiple species. Although Drosophila YY1 [pleiohomeotic (Pho)] and its homolog [pleiohomeotic-like (Phol)] redundantly control homeotic gene expression, the regulatory contributions of YY1-homologs have not yet been examined in other species. Indeed, targets for the mammalian YY1 homolog YY2 are completely unknown. Using gene set enrichment analysis, we found that lentiviral constructs containing short hairpin loop inhibitory RNAs for human YY1 (shYY1) and its homolog YY2 (shYY2) caused significant changes in both shared and distinguishable gene sets in human cells. Ribosomal protein genes were the most significant gene set upregulated by both shYY1 and shYY2, although combined shYY1/2 knock downs were not additive. In contrast, shYY2 reversed the anti-proliferative effects of shYY1, and shYY2 particularly altered UV damage response, platelet-specific and mitochondrial function genes. We found that decreases in YY1 or YY2 caused inverse changes in UV sensitivity, and that their combined loss reversed their respective individual effects. Our studies show that human YY2 is not redundant to YY1, and YY2 is a significant regulator of genes previously identified as uniquely responding to YY1.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fator de Transcrição YY1/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Reação em Cadeia da Polimerase , Interferência de RNA , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Raios Ultravioleta , Fator de Transcrição YY1/antagonistas & inibidores , Fator de Transcrição YY1/genética
2.
Cancer Res ; 68(9): 3389-95, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451166

RESUMO

Selective kinase inhibitors have had a substantial impact on the field of medical oncology. Whereas these agents can elicit dramatic clinical responses in some settings, their activity is generally limited to a subset of treated patients whose tumor cells harbor a specific genetic lesion. We have established an automated platform for examining the sensitivity to various molecularly targeted inhibitors across a large panel of human tumor-derived cell lines to identify additional genotype-correlated responses that may be clinically relevant. Among the inhibitors tested in a panel of 602 cell lines derived from a variety of human cancers, we found that a selective inhibitor of the anaplastic lymphoma kinase (ALK) potently suppressed growth of a small subset of tumor cells. This subset included lines derived from anaplastic large cell lymphomas, non-small-cell lung cancers, and neuroblastomas. ALK is a receptor tyrosine kinase that was first identified as part of a protein fusion derived from a chromosomal translocation detected in the majority of anaplastic large cell lymphoma patients, and has recently been implicated as an oncogene in a small fraction of non-small-cell lung cancers and neuroblastomas. Significantly, sensitivity in these cell lines was well correlated with specific ALK genomic rearrangements, including chromosomal translocations and gene amplification. Moreover, in such cell lines, ALK kinase inhibition can lead to potent suppression of downstream survival signaling and an apoptotic response. These findings suggest that a subset of lung cancers, lymphomas, and neuroblastomas that harbor genomic ALK alterations may be clinically responsive to pharmacologic ALK inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Linfoma/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Pirimidinas/uso terapêutico , Quinase do Linfoma Anaplásico , Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Análise Citogenética , Avaliação Pré-Clínica de Medicamentos , Amplificação de Genes/fisiologia , Instabilidade Genômica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/genética , Linfoma/classificação , Linfoma/genética , Mutação , Neuroblastoma/classificação , Neuroblastoma/genética , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Receptores Proteína Tirosina Quinases , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA