Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochem J ; 481(5): 363-385, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38421035

RESUMO

The plant macronutrient phosphorus is a scarce resource and plant-available phosphate is limiting in most soil types. Generally, a gene regulatory module called the phosphate starvation response (PSR) enables efficient phosphate acquisition by roots and translocation to other organs. Plants growing on moderate to nutrient-rich soils need to co-ordinate availability of different nutrients and repress the highly efficient PSR to adjust phosphate acquisition to the availability of other macro- and micronutrients, and in particular nitrogen. PSR repression is mediated by a small family of single SYG1/Pho81/XPR1 (SPX) domain proteins. The SPX domain binds higher order inositol pyrophosphates that signal cellular phosphorus status and modulate SPX protein interaction with PHOSPHATE STARVATION RESPONSE1 (PHR1), the central transcriptional regulator of PSR. Sequestration by SPX repressors restricts PHR1 access to PSR gene promoters. Here we focus on SPX4 that primarily acts in shoots and sequesters many transcription factors other than PHR1 in the cytosol to control processes beyond the classical PSR, such as nitrate, auxin, and jasmonic acid signalling. Unlike SPX1 and SPX2, SPX4 is subject to proteasomal degradation not only by singular E3 ligases, but also by SCF-CRL complexes. Emerging models for these different layers of control and their consequences for plant acclimation to the environment will be discussed.


Assuntos
Fosfatos , Fósforo , Fosfatos/metabolismo , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Plantas/genética , Plantas/metabolismo , Ubiquitinação , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Environ ; 46(4): 1264-1277, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35909262

RESUMO

Plant vacuoles serve as the primary intracellular compartments for phosphorus (P) storage. The Oryza sativa genome contains three genes that encode SPX ( SYG1/ PHO81/ XPR1)-MFS ( Major Facility Superfamily) proteins (OsSPX-MFS1-3). The physiological roles of the three transporters under varying P conditions in laboratory and field are not known. To address this knowledge gap, we generated single, double and triple mutants for three OsSPX-MFS genes. All the mutants except Osspx-mfs2 display lower vacuolar Pi concentrations and OsSPX-MFSs overexpression plant display higher Pi accumulation, demonstrating that all OsSPX-MFSs are vacuolar Pi influx transporters. OsSPX-MFS3 plays the dominant role based on the phenotypes of single mutants in terms of growth, vacuolar and tissue Pi concentrations. OsSPX-MFS2 is the weakest and only functions as vacuole Pi sequestration in an Osspx-mfs1/3 background. The vacuolar Pi sequestration capacity was severely impaired in Osspx-mfs1/3 and Osspx-mfs1/2/3, which resulted in increased Pi allocation to aerial organs. High P in the panicle impaired panicle and fertility in Osspx-mfs1/3 and Osspx-mfs1/2/3. Osspx-mfs2 resulted in a more stable yield compared to the wild type under low P in field grown plants. The results suggest that alteration of vacuolar Pi sequestration may be a novel effective strategy to improve rice tolerance to low phosphorus in cropping systems.


Assuntos
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/genética , Homeostase , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Transporte de Fosfato/genética
3.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918544

RESUMO

Soybean (Glycine max) oil is one of the most widely used vegetable oils across the world. Breeding of soybean to reduce the saturated fatty acid (FA) content, which is linked to cardiovascular disease, would be of great significance for nutritional improvement. Acyl-acyl carrier protein thioesterases (FATs) can release free FAs and acyl-ACP, which ultimately affects the FA profile. In this study, we identified a pair of soybean FATB coding genes, GmFATB1a and GmFATB1b. Mutants that knock out either or both of the GmFATB1 genes were obtained via CRISPR/Cas9. Single mutants, fatb1a and fatb1b, showed a decrease in leaf palmitic and stearic acid contents, ranging from 11% to 21%. The double mutant, fatb1a:1b, had a 42% and 35% decrease in palmitic and stearic acid content, displayed growth defects, and were male sterility. Analysis of the seed oil profile revealed that fatb1a and fatb1b had significant lower palmitic and stearic acid contents, 39-53% and 17-37%, respectively, while that of the unsaturated FAs were the same. The relative content of the beneficial FA, linoleic acid, was increased by 1.3-3.6%. The oil profile changes in these mutants were confirmed for four generations. Overall, our data illustrate that GmFATB1 knockout mutants have great potential in improving the soybean oil quality for human health.


Assuntos
Sistemas CRISPR-Cas , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Marcação de Genes , Glycine max/genética , Glycine max/metabolismo , Tioléster Hidrolases/deficiência , Expressão Gênica , Estudos de Associação Genética , Engenharia Genética , Humanos , Mutação , Fenótipo , Proteínas de Plantas/genética , Óleo de Soja/genética , Óleo de Soja/metabolismo
4.
J Exp Bot ; 71(14): 4321-4332, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32270183

RESUMO

Whilst constitutive overexpression of particular acid phosphatases (APases) can increase utilization of extracellular organic phosphate, negative effects are frequently observed in these transgenic plants under conditions of inorganic phosphate (Pi) sufficiency. In this study, we identified rice purple acid phosphatase 10c (OsPAP10c) as being a novel and major APase that exhibits activities associated both with the root surface and with secretion. Two constructs were used to generate the OsPAP10c-overexpression plants by driving its coding sequence with either a ubiquitin promoter (UP) or the OsPAP10c-native promoter (NP). Compared with the UP transgenic plants, lower expression levels and APase activities were observed in the NP plants. However, the UP and NP plants both showed a similar ability to degrade extracellular ATP and both promoted root growth. The growth performance and yield of the NP transgenic plants were better than the wild-type and UP plants in both hydroponic and field experiments irrespective of the level of Pi supply. Overexpression of APase by its native promoter therefore provides a potential way to improve crop production that might avoid increased APase activity in untargeted tissues and its inhibition of the growth of transgenic plants.


Assuntos
Oryza , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Regulação da Expressão Gênica de Plantas , Organofosfatos , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Plant Physiol ; 181(1): 332-352, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31262954

RESUMO

Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 modulates the shoot phosphate starvation response but not short-term recovery after phosphate resupply. In roots, transcriptional regulation of P status is SPX4 independent. Genes misregulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence, and ion/metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate resupply to P-limited plants. Unlike its monocot ortholog, AtSPX4 was not stabilized by the phosphate analog phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Acetil-CoA Carboxilase/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Redes Reguladoras de Genes , Fosfatos/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Domínios Proteicos , Transdução de Sinais , Fatores de Transcrição/genética
6.
Plant Cell Physiol ; 58(5): 885-892, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28371895

RESUMO

During phosphate (Pi) starvation or leaf senescence, the accumulation of intracellular and extracellular purple acid phosphatases (PAPs) increases in plants in order to scavenge organic phosphorus (P). In this study, we demonstrated that a PAP-encoding gene in rice, OsPAP26, is constitutively expressed in all tissues. While the abundance of OsPAP26 transcript is not affected by Pi supply, it is up-regulated during leaf senescence. Furthermore, Pi deprivation and leaf senescence greatly increased the abundance of OsPAP26 protein. Overexpression or RNA interference (RNAi) of OsPAP26 in transgenic rice significantly increased or reduced APase activities, respectively, in leaves, roots and growth medium. Compared with wild-type (WT) plants, Pi concentrations of OsPAP26-overexpressing plants increased in the non-senescing leaves and decreased in the senescing leaves. The increased remobilization of Pi from the senescing leaves to non-senescing leaves in the OsPAP26-overexpressing plants resulted in better growth performance when plants were grown in Pi-depleted condition. In contrast, OsPAP26-RNAi plants retained more Pi in the senescing leaves, and were more sensitive to Pi starvation stress. OsPAP26 was found to localize to the apoplast of rice cells. Western blot analysis of protein extracts from callus growth medium confirmed that OsPAP26 is a secreted PAP. OsPAP26-overexpressing plants were capable of converting more ATP into inorganic Pi in the growth medium, which further supported the potential role of OsPAP26 in utilizing organic P in the rhizosphere. In summary, we concluded that OsPAP26 performs dual functions in plants: Pi remobilization from senescing to non-senescing leaves; and organic P utilization.


Assuntos
Fosfatase Ácida/metabolismo , Glicoproteínas/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fosfatase Ácida/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glicoproteínas/genética , Oryza/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
7.
Plant Cell Environ ; 39(10): 2247-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411391

RESUMO

Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice.


Assuntos
Fosfatase Ácida/fisiologia , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/fisiologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Fósforo/farmacologia , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA Mensageiro/metabolismo
8.
BMC Genomics ; 15: 230, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666749

RESUMO

BACKGROUND: Highly adapted plant species are able to alter their root architecture to improve nutrient uptake and thrive in environments with limited nutrient supply. Cluster roots (CRs) are specialised structures of dense lateral roots formed by several plant species for the effective mining of nutrient rich soil patches through a combination of increased surface area and exudation of carboxylates. White lupin is becoming a model-species allowing for the discovery of gene networks involved in CR development. A greater understanding of the underlying molecular mechanisms driving these developmental processes is important for the generation of smarter plants for a world with diminishing resources to improve food security. RESULTS: RNA-seq analyses for three developmental stages of the CR formed under phosphorus-limited conditions and two of non-cluster roots have been performed for white lupin. In total 133,045,174 high-quality paired-end reads were used for a de novo assembly of the root transcriptome and merged with LAGI01 (Lupinus albus gene index) to generate an improved LAGI02 with 65,097 functionally annotated contigs. This was followed by comparative gene expression analysis. We show marked differences in the transcriptional response across the various cluster root stages to adjust to phosphate limitation by increasing uptake capacity and adjusting metabolic pathways. Several transcription factors such as PLT, SCR, PHB, PHV or AUX/IAA with a known role in the control of meristem activity and developmental processes show an increased expression in the tip of the CR. Genes involved in hormonal responses (PIN, LAX, YUC) and cell cycle control (CYCA/B, CDK) are also differentially expressed. In addition, we identify primary transcripts of miRNAs with established function in the root meristem. CONCLUSIONS: Our gene expression analysis shows an intricate network of transcription factors and plant hormones controlling CR initiation and formation. In addition, functional differences between the different CR developmental stages in the acclimation to phosphorus starvation have been identified.


Assuntos
Redes Reguladoras de Genes/genética , Lupinus/genética , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
9.
Curr Opin Plant Biol ; 16(2): 205-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23566853

RESUMO

Rice is one of the most important cereal crops feeding a large segment of the world's population. Inefficient utilization of phosphate (Pi) fertilizer by the plant in rice production increases cost and pollution. Developing cultivars with improved Pi use efficiency is essential for the sustainability of agriculture. Pi uptake, translocation and remobilization are regulated by complex molecular mechanisms through the functions of Pi transporters (PTs) and other downstream Pi Starvation Induced (PSI) genes. Expressions of these PSI genes are regulated by the Pi Starvation Response Regulator (OsPHR2)-mediated transcriptional control and/or PHO2-mediated ubiquitination. SPX-domain containing proteins and the type I H(+)-PPase AVP1 involved in the maintenance and utilization of the internal phosphate. The potential application of posttranscriptional regulation of PT1 through OsPHF1 for Pi efficiency is proposed.


Assuntos
Homeostase , Oryza/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Transdução de Sinais , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo
10.
J Integr Plant Biol ; 54(9): 631-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22805094

RESUMO

Phosphorus (P) deficiency is a major limitation for plant growth and development. Among the wide set of responses to cope with low soil P, plants increase their level of intracellular and secreted acid phosphatases (APases), which helps to catalyze inorganic phosphate (Pi) hydrolysis from organo-phosphates. In this study we characterized the rice (Oryza sativa) purple acid phosphatase 10a (OsPAP10a). OsPAP10a belongs to group Ia of purple acid phosphatases (PAPs), and clusters with the principal secreted PAPs in a variety of plant species including Arabidopsis. The transcript abundance of OsPAP10a is specifically induced by Pi deficiency and is controlled by OsPHR2, the central transcription factor controlling Pi homeostasis. In gel activity assays of root and shoot protein extracts, it was revealed that OsPAP10a is a major acid phosphatase isoform induced by Pi starvation. Constitutive overexpression of OsPAP10a results in a significant increase of phosphatase activity in both shoot and root protein extracts. In vivo root 5-bromo-4-chloro-3-indolyl-phosphate (BCIP) assays and activity measurements on external media showed that OsPAP10a is a root-associated APase. Furthermore, overexpression of OsPAP10a significantly improved ATP hydrolysis and utilization compared with wild type plants. These results indicate that OsPAP10a can potentially be used for crop breeding to improve the efficiency of P use.


Assuntos
Fosfatase Ácida/metabolismo , Espaço Extracelular/metabolismo , Oryza/enzimologia , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Fosfatase Ácida/genética , Trifosfato de Adenosina/metabolismo , Espaço Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos Orgânicos/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Fósforo/deficiência , Fósforo/farmacologia , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solo
11.
New Phytol ; 193(4): 842-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22403821

RESUMO

Plant growth and development are strongly influenced by the availability of nutrients in the soil solution. Among them, phosphorus (P) is one of the most essential and most limiting macro-elements for plants. In the environment, plants are often confronted with P starvation as a result of extremely low concentrations of soluble inorganic phosphate (Pi) in the soil. To cope with these conditions, plants have developed a wide spectrum of mechanisms aimed at increasing P use efficiency. At the molecular level, recent studies have shown that several proteins carrying the SPX domain are essential for maintaining Pi homeostasis in plants. The SPX domain is found in numerous eukaryotic proteins, including several proteins from the yeast PHO regulon, involved in maintaining Pi homeostasis. In plants, proteins harboring the SPX domain are classified into four families based on the presence of additional domains in their structure, namely the SPX, SPX-EXS, SPX-MFS and SPX-RING families. In this review, we highlight the recent findings regarding the key roles of the proteins containing the SPX domain in phosphate signaling, as well as providing further research directions in order to improve our knowledge on P nutrition in plants, thus enabling the generation of plants with better P use efficiency.


Assuntos
Fosfatos/metabolismo , Proteínas de Plantas/fisiologia , Estrutura Terciária de Proteína , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Fósforo/metabolismo , Proteínas de Plantas/química , Plantas/metabolismo , Estrutura Terciária de Proteína/genética , Transdução de Sinais , Leveduras/genética , Leveduras/metabolismo
12.
Plant Physiol ; 151(1): 262-74, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19605549

RESUMO

The antagonistic interaction between iron (Fe) and phosphorus (P) has been noted in the area of plant nutrition. To understand the physiology and molecular mechanisms of this interaction, we studied the growth performance, nutrient concentration, and gene expression profiles of root and shoot segments derived from 10-d-old rice (Oryza sativa) seedlings under four different nutrient conditions: (1) full strength of Fe and P (+Fe+P); (2) full strength of P and no Fe (-Fe+P); (3) full strength of Fe and no P (+Fe-P); and (4) without both Fe and P (-Fe-P). While removal of Fe in the growth medium resulted in very low shoot and root Fe concentrations, the chlorotic symptoms and retarded seedling growth were only observed on seedlings grown in the presence of P. Microarray data showed that in roots, 7,628 transcripts were significantly changed in abundance in the absence of Fe alone. Interestingly, many of these changes were reversed if P was also absent (-Fe-P), with only approximately 15% overlapping with -Fe alone (-Fe+P). Analysis of the soluble Fe concentration in rice seedling shoots showed that P deficiency resulted in significantly increased Fe availability within the plants. The soluble Fe concentration under -Fe-P conditions was similar to that under +Fe+P conditions. These results provide evidence that the presence of P can affect Fe availability and in turn can influence the regulation of Fe-responsive genes.


Assuntos
Perfilação da Expressão Gênica , Ferro/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Zhong Yao Cai ; 31(4): 483-7, 2008 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-18661815

RESUMO

OBJECTIVE: To establish the AFLP Fingerprinting system in the germplasm of Atractylodes macrocephala Koidz. METHODS: 10 wild or cultivated Atractylodes macrocephala were used for AFLP fingerprinting analysis by EcoRI and MseI restriction enzymes with silver staining. RESULTS: Using 2X CTAB buffer extraction method can obtain the best genomic DNA samples. According to the AFLP polymorphism, sixteen out of forty primer pairs were selected to be suitable for AFLP analysis. Total 3003 polymorphic bands were obtained from the 16 sets of primer. Based on the AFLP results, the 10 samples of Atractylodes macrocephala germplasm were classified into four types. CONCLUSION: The establishment of the AFLP fingerprinting system in Atractylodes macrocephala will be used in the identification of germplasms and breeding of the species.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Atractylodes/genética , Marcadores Genéticos , Plantas Medicinais/genética , Atractylodes/classificação , Análise por Conglomerados , Impressões Digitais de DNA/métodos , DNA de Plantas/análise , DNA de Plantas/isolamento & purificação , Genoma de Planta/genética , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA