Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198741

RESUMO

Despite Phe being an indispensable amino acid for cats, the minimum Phe requirement for adult cats has not been empirically defined. The objective of study 1 was to determine the minimum Phe requirement, where Tyr is in excess, in adult cats using the direct amino acid oxidation (DAAO) technique. Four adult male cats were used in an 8 × 4 Latin rectangle design. Cats were adapted to a basal diet for 7 d, top dressed with Phe to meet 140% of the adequate intake (NRC, 2006. Nutrient requirements of dogs and cats. Washington, DC: Natl. Acad. Press). Cats were randomly assigned to one of eight experimental Phe diets (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). Following 1 d of diet adaptation, individual DAAO studies were performed. During each DAAO study, cats were placed into individual indirect calorimetry chambers, and 75% of the cat's daily meal was divided into 13 equal meals supplied with a dose of L-[1-13C]-Phe. Oxidation of L-[1-13C]-Phe (F13CO2) during isotopic steady state was determined from the enrichment of 13CO2 in breath. Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Phe on 13CO2. The mean population minimum requirement for Phe was estimated at 0.32% DM and the upper 95% population confidence limit at 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. In study 2, the effects of a bolus dose of Phe (44 mg kg-1 BW) on food intake, gastric emptying (GE), and macronutrient metabolism were assessed in a crossover design with 12 male cats. For food intake, cats were given Phe 15 min before 120% of their daily food was offered and food intake was measured. Treatment, day, and their interaction were evaluated using PROC GLIMMIX in SAS. Treatment did not affect any food intake parameters (P > 0.05). For GE and macronutrient metabolism, cats were placed into individual indirect calorimetry chambers, received the same bolus dose of Phe, and 15 min later received 13C-octanoic acid (5 mg kg-1 BW) on 50% of their daily food intake. Breath samples were collected to measure 13CO2. The effect of treatment was evaluated using PROC GLIMMIX in SAS. Treatment did not affect total GE (P > 0.05), but cats receiving Phe tended to delay time to peak enrichment (0.05 < P ≤ 0.10). Overall, Phe at a bolus dose of 44 mg kg-1 BW had no effect on food intake, GE, or macronutrient metabolism. Together, these results suggest that the bolus dose of Phe used may not be sufficient to elicit a GE response, but a study with a greater number of cats and greater food intake is warranted.


Two studies were conducted to evaluate 1) the minimum requirement for dietary Phe and 2) the effects of Phe on gastric emptying (GE) and food intake in adult cats. In study 1, the minimum Phe requirement was estimated using the direct amino acid oxidation (DAAO) technique. Four cats were used and received all diets in random order in a Latin rectangle design (0.29%, 0.34%, 0.39%, 0.44%, 0.54%, 0.64%, 0.74%, and 0.84% Phe in the diet on a dry matter [DM] basis). The minimum Phe requirement, in the presence of excess of Tyr, for adult cats was estimated to be 0.59% DM on an energy density of 4,200 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors; higher than current recommendations set in place by the National Research Council and the American Association of Feed Control Officials. In study 2, we first validated the use of the 13C-octanoic acid breath test (13C-OABT) in cats. Then, the effects of an oral bolus of Phe on food intake, GE, and macronutrient metabolism were evaluated. Phe supplementation did not influence food intake, macronutrient metabolism, or total GE, but tended to delay the time to peak GE.


Assuntos
Doenças do Gato , Doenças do Cão , Gatos , Masculino , Animais , Cães , Aminoácidos/metabolismo , Fenilalanina/farmacologia , Fenilalanina/metabolismo , Esvaziamento Gástrico , Dieta/veterinária , Nutrientes , Ingestão de Alimentos
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38092464

RESUMO

There is a lack of empirical data on the dietary Met requirement, in the presence of Cys or cystine, in adult cats. Thus, the aim of this study was to determine the Met requirement, in the presence of excess Cys, in adult cats at maintenance using the indicator amino acid oxidation (IAAO) technique. Six adult neutered male cats were initially selected and started the study. Cats were adapted to the basal diet sufficient in Met (0.24% dry matter, DM) for 14 d prior to being randomly allocated to one of eight dietary levels of Met (0.10%, 0.13%, 0.17%, 0.22%, 0.27%, 0.33%, 0.38%, and 0.43% DM). Different dietary Met concentrations were achieved by supplementing the basal diet with Met solutions. Alanine was additionally included in the solutions to produce isonitrogenous and isoenergetic diets. Cats underwent a 2-d adaptation period to each experimental diet prior to each IAAO study day. On IAAO study days, 13 meals were offered corresponding to 75% of each cat's daily food allowance. The remaining 25% of their daily food intake was offered after each IAAO study. A bolus dose of NaH13CO3 (0.44 mg kg-1) and l-[1-13C]-phenylalanine (13C-Phe; 4.8 mg kg-1) were provided in fifth and sixth meals, respectively, followed by a constant dose of 13C-Phe (1.04 mg kg-1) in the next meals. Breath samples were collected and total production of 13CO2 was measured every 25 min through respiration calorimetry chambers. Steady state of 13CO2 achieved over at least three breath collections was used to calculate oxidation of 13C-Phe (F13CO2). Competing models were applied using the NLMIXED procedure in SAS to determine the effects of dietary Met on 13CO2. Two cats were removed from the study as they did not eat all meals, which is required to achieve isotopic steady. A breakpoint for the mean Met requirement, with excess of Cys, was identified at 0.24% DM (22.63 mg kg-1) with an upper 95% confidence limit of 0.40% DM (37.71 mg·kg-1), on an energy density of 4,164 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. The estimated Met requirement, in the presence of excess of Cys, is higher than the current recommendations proposed by the National Research Council's Nutrient Requirement of Dogs and Cats, the Association of American Feed Control Officials, and the European Pet Food Industry Federation.


The objective of this study was to determine the minimum Met requirement, when Cys was provided in excess, of adult cats using a highly sensitive and noninvasive technique, the indicator amino acid oxidation (IAAO). Six adult cats were fed experimental diets with varying levels of methionine (0.10%, 0.13%, 0.17%, 0.22%, 0.27%, 0.33%, 0.38%, and 0.43% on a dry matter [DM] basis) for 2 d prior to each IAAO study day. Although not all cats completed the study, a breakpoint was still defined in the statistical models applied, resulting in an estimated minimum Met requirement of 0.40% DM (37.71 mg kg−1), on an energy density of 4,164 kcal of metabolizable energy/kg DM calculated using the modified Atwater factors. The Met requirement, in the presence of excess of Cys, estimated in our study is higher than the current recommendations proposed by the National Research Council's Nutrient Requirement of Dogs and Cats, the Association of American Feed Control Officials, and the European Pet Food Industry Federation.


Assuntos
Doenças do Gato , Doenças do Cão , Masculino , Gatos , Animais , Cães , Aminoácidos/metabolismo , Metionina/metabolismo , Fenilalanina/metabolismo , Oxirredução , Racemetionina/metabolismo , Dieta/veterinária , Necessidades Nutricionais
3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935917

RESUMO

Camelina oil is derived from a low-input, high-yield crop and, in comparison to many other dietary fat sources currently used in equine diets, provides a greater amount of α-linolenic acid [ALA; (n-3)], than linoleic acid [LA; (n-6)]. However, no research exists assessing the effects of feeding camelina oil to horses in contrast to other commonly used oils. The objective of this study was to compare the effect of supplementing camelina oil to that of flaxseed and canola oil supplementation, on outcomes related to skin and coat health in horses. Thirty adult horses [23 mares, 7 geldings; 14.9 years ±â€…5.3 years; 544 ±â€…66 kg body weight (BW) (mean ±â€…SD)] underwent a 4-week wash-in period consuming hay and sunflower oil. Following the wash-in period, horses were blocked by location, age, and BW, and assigned to one of three treatment oils for 16 weeks (370 mg oil/kg BW): camelina (CAM), canola (OLA), or flaxseed (FLX) oil. Blood samples were collected and plasma prostaglandin E2 (PGE2; ELISA), nitric oxide (NO; Griess Reaction), and glycosaminoglycan (GAG; DMMB) concentrations were measured on weeks 0 (n = 30), 14 (n = 24), and 16 (n = 30). On weeks 0, 2, 4, 8, and 16, transepidermal water loss (TEWL) was measured pre- and post-acetone application using a VapoMeter (n = 26), and a 5-point-Likert scale was used to assess skin and coat characteristics on the side and rump of the horses (n = 30). All data were analyzed with repeated measures ANOVA using PROC GLIMMIX in SAS. Independent of treatment, coat color, and quality increased from baseline. There were no differences in the outcomes assessed between the horses supplemented camelina oil and those supplemented canola or flaxseed oil. These results suggest that independent of treatment, all oil supplements improved coat color and quality in horses. This provides indication that camelina oil is comparable to existing plant-based oil supplements in supporting skin and coat health and inflammation in horses.


Horses cannot produce omega-3 α-linolenic acid or omega-6 linoleic acid in the body, and as a result, these fatty acids are required in the diet. Camelina oil contains a lower ratio of omega-6 to omega-3 fatty acids (1:1.8) in comparison to alternative fat ingredients commonly included in many horse diets, such as soybean oil (1:0.12). Omega-3 fatty acids from flaxseed oil or marine-based oils can support skin and coat health and lower inflammation in horses; however, there is a lack of research investigating camelina oil supplementation and its benefits in horses. Thus, the objective of this study was to determine the effects of camelina oil on skin and coat health in horses. Horses were supplemented with sunflower oil for 4 weeks before being assigned to one of three treatment oils (camelina, canola, or flaxseed) for 16 weeks. Skin barrier function was assessed by measuring the transepidermal water loss of the chest, inner elbow, withers, and rump. Blood markers, including prostaglandin E2, nitric oxide, and glycosaminoglycan, were measured. Skin and coat parameters, including shine, softness, hair quality, color intensity, and moisture, were assessed using a 5-point scale on the rump and side of the horses. No differences in transepidermal water loss, blood markers, or skin and coat parameters were observed among treatments. Our results suggest that camelina oil is comparable to existing oil supplements in supporting skin and coat health and inflammation in horses.


Assuntos
Ácidos Graxos Ômega-3 , Linho , Animais , Cavalos , Masculino , Feminino , Dinoprostona , Óleo de Brassica napus , Óxido Nítrico , Água , Glicosaminoglicanos , Dieta/veterinária , Suplementos Nutricionais/análise , Óleo de Semente do Linho , Óleos de Plantas/farmacologia , Ácidos Graxos Ômega-3/farmacologia
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37658823

RESUMO

Low protein diets supplemented with essential amino acids (EAA) fed to pigs reduce the excess supply of EAA and nitrogen (N). However, low protein diets may become limiting in non-essential amino acids (NEAA) and N, thus affecting the utilization of EAA for N retention. It has been suggested that the EAA-N:total N (E:T) ratio can give an indication of dietary N sufficiency. An N-balance study was conducted to determine the effect of E:T ratio on the Lys requirement for maximum N retention. A total of 80 growing barrows (19.3 ±â€…0.21 kg initial body weight) were randomly assigned to 1 of 10 diets (n = 8) in 8 blocks in a 2 × 5 factorial arrangement. Diets consisted of a low ratio (LR; E:T of 0.33) or a high ratio (HR; E:T of 0.36) with graded Lys content (0.82%, 0.92%, 1.02%, 1.12%, and 1.22% standardized ileal digestible [SID]). After a 7-d adaptation, a 4-d N-balance collection was conducted. Blood samples were obtained on d 2 of the collection period 2 h after the morning meal for plasma urea N (PUN) analysis. Data were analyzed using the MIXED model procedure with fixed effects of ratio (n = 2), Lys (n = 5), and their interactions. The experimental block (room) was included as a random effect (n = 8). The SID Lys requirement was estimated using PROC NLIN linear broken-line breakpoint model. There was a significant interaction between E:T ratio and Lys (P < 0.01), where LR diets had a higher N retention than HR diets, while increasing Lys linearly increased N retention (P = 0.01) in both HR and LR diets. The marginal efficiency of utilizing SID Lys (P < 0.01) reduced with increasing Lys content, while the efficiency of utilizing N (P < 0.05) increased as Lys increased. The SID Lys required to maximize N retention of pigs fed HR diets was estimated at 1.08% (R2 = 0.61) and LR diets at 1.21% (R2 = 0.80). The current results indicate that N may be limiting in diets with a high E:T ratio, limiting N retention. Supplying additional dietary N, as intact protein, can increase N retention, resulting in a greater Lys requirement.


Low protein diets supplemented with essential amino acids (EAA) can improve growth performance, but dietary non-essential amino acids (NEAA) and nitrogen (N) content may be limiting factors. This limitation may ultimately affect the efficient utilization of EAA for optimal N retention and growth performance. As a benchmark, appropriate quantities of EAA and total N (TN) must be provided, using the EAA-N to TN ratio (E:T) to indicate that both are supplied in sufficient amounts. The present study generally observed a linear increase in N retention with increasing dietary Lys, and N retention was greater in the low E:T as compared with high E:T diets. A greater Lys requirement was observed in the low E:T compared with the high E:T-fed pigs. A low E:T ratio with Lys above current recommendations is warranted to maximize N retention.


Assuntos
Aminoácidos Essenciais , Lisina , Animais , Suínos , Aminoácidos , Suplementos Nutricionais , Nitrogênio
5.
Front Vet Sci ; 10: 1198175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565085

RESUMO

Introduction: Due to the involvement in one-carbon metabolism and lipid mobilization, choline and L-carnitine supplementation have been recommended to minimize hepatic lipid accumulation and support fat oxidation, respectively. This study investigated the lipotropic benefits of choline or L-carnitine supplementation in lean and obese cats maintaining body weight (BW). Methods: Lean [n = 9; body condition score (BCS): 4-5/9] and obese (n = 9; BCS: 8-9/9) adult male neutered colony cats were used in a replicated 3 x 3 complete Latin square design. Treatments included choline (378 mg/kg BW0.67), L-carnitine (200 mg/kg BW) and control (no supplement). Treatments were supplemented to the food for 6 weeks each, with a 2-week washout between treatments. Cats were fed once daily to maintenance energy requirements, and BW and BCS were assessed weekly. Fasted blood collection, indirect calorimetry, and dual-energy X-ray absorptiometry occurred at the end of each treatment period. Serum was analyzed for cholesterol (CHOL), high-density lipoprotein CHOL (HDL-C), triglycerides (TAG), non-esterified fatty acids (NEFA), glucose, creatinine (CREAT), urea, alkaline phosphatase (ALP) and alanine aminotransferase (ALT). Very low-density lipoprotein CHOL (VLDL) and low-density lipoprotein CHOL (LDL-C) were calculated. Data were analyzed using proc GLIMMIX, with group and period as random effects, and treatment, body condition, and their interaction as fixed effects, followed by a Tukey's post-hoc test when significance occurred. Results: Cats supplemented choline had lower food intake (P = 0.025). Treatment did not change BW, BCS and body composition (P > 0.05). Obese cats had greater ALP, TAG, and VLDL, and lower HDL-C compared to lean cats (P < 0.05). Choline resulted in greater CHOL, HDL-C, LDL-C and ALT (P < 0.05). L-carnitine resulted in lower CREAT (P = 0.010). Following the post-hoc test, differences between treatment means were not present for ALP (P = 0.042). No differences were found for glucose, urea or NEFA (P > 0.05). Obese cats had a lower fed respiratory quotient (RQ), regardless of treatment (P = 0.045). Treatment did not affect fed or fasted RQ and energy expenditure (P > 0.05). Discussion: Choline appeared to increase circulating lipid and lipoprotein concentrations regardless of body condition, likely through enhanced lipid mobilization and hepatic elimination. Neither dietary choline or L-carnitine altered body composition or energy metabolism in the lean or obese cats, as compared to control.

6.
J Nutr ; 153(5): 1461-1475, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972833

RESUMO

BACKGROUND: Pulses are an attractive alternative protein source for all mammals; however, recent reports suggest that these ingredients may be related to developing dilated cardiomyopathy in dogs. OBJECTIVES: The primary objective of this study was to quantify the effects of dietary pulse intake by adult dogs on cardiac function using echocardiographic measurements and cardiac biomarkers N-terminal pro-B-type natriuretic peptide and cardiac troponin I (cTnI). Second, to investigate the effects of pulse consumption on plasma sulfur amino acid (SAA) concentrations as pulses are generally low in SAA and may limit taurine synthesis. Last, to assess the general safety and efficacy of feeding pulse-containing diets on canine body composition and hematological and biochemical indices. METHODS: Twenty-eight privately-owned domestic Siberian Huskies (13 females; 4 intact, and 15 males; 6 intact) with a mean age of 5.3 ± 2.8 y (± SD) were randomly assigned to 1 of 4 dietary treatments (n = 7/treatment), with equal micronutrient supplementation and increasing whole pulse ingredient inclusion (0%, 15%, 30%, and 45%) with pea starch used to balance protein and energy. RESULTS: After 20 wks of feeding, there were no differences (P > 0.05) in echocardiographic parameters, N-terminal pro-B-type natriuretic peptide, and cTnI concentrations among treatments or across time within treatment (P > 0.05), indicating no differences in cardiac function among treatments. Concentrations of cTnI remained below the safe upper limit of 0.2 ng/mL for all dogs. Plasma SAA status, body composition, and hematological and biochemical indices were similar among treatments and over time (P > 0.05). CONCLUSIONS: The results from this study suggest that increasing the inclusion of pulses up to 45% with the removal of grains and equal micronutrient supplementation does not impact cardiac function concurrent with dilated cardiomyopathy, body composition, or SAA status and is safe for healthy adult dogs to consume when fed for 20 wks.


Assuntos
Aminoácidos Sulfúricos , Cardiomiopatia Dilatada , Animais , Cães , Feminino , Masculino , Ração Animal/análise , Cardiomiopatia Dilatada/veterinária , Galinhas/metabolismo , Dieta/veterinária , Mamíferos/metabolismo , Micronutrientes , Peptídeo Natriurético Encefálico , Pisum sativum , Amido , Taurina/metabolismo
7.
PLoS One ; 18(1): e0280734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689425

RESUMO

Choline participates in methyl group metabolism and has been recognized for its roles in lipid metabolism, hepatic health and muscle function in various species. Data regarding the impacts of choline on feline metabolic pathways are scarce. The present study investigated how choline intake affects the metabolomic profile of overweight cats fed at maintenance energy. Overweight (n = 14; body condition score:6-8/9) male adult cats were supplemented with five doses of choline in a 5x5 Latin Square design. Cats received a daily dose of choline on extruded food (3620 mg choline/kg diet) for three weeks at maintenance energy requirements (130 kcal/kgBW0.4). Doses were based on body weight (BW) and the daily recommended allowance (RA) for choline for adult cats (63 mg/kg BW0.67). Treatment groups included: Control (no additional choline, 1.2 x NRC RA, 77 mg/kg BW0.67), 2 x NRC RA (126 mg/kg BW0.67), 4 x NRC RA (252 mg/kg BW0.67), 6 x RA (378 mg/kg BW0.67), and 8 x NRC RA (504 mg/kg BW0.67). Serum was collected after an overnight fast at the end of each treatment period and analyzed for metabolomic parameters through nuclear magnetic resonance (NMR) spectroscopy and direct infusion mass spectrometry (DI-MS). Data were analyzed using GLIMMIX, with group and period as random effects, and dose as the fixed effect. Choline up to 8 x NRC RA was well-tolerated. Choline at 6 and 8 x NRC RA resulted in greater concentrations of amino acids and one-carbon metabolites (P < 0.05) betaine, dimethylglycine and methionine. Choline at 6 x NRC RA also resulted in greater phosphatidylcholine and sphingomyelin concentrations (P < 0.05). Supplemental dietary choline may be beneficial for maintaining hepatic health in overweight cats, as it may increase hepatic fat mobilization and methyl donor status. Choline may also improve lean muscle mass in cats. More research is needed to quantify how choline impacts body composition.


Assuntos
Colina , Sobrepeso , Gatos , Animais , Masculino , Colina/metabolismo , Sobrepeso/veterinária , Dieta/veterinária , Betaína/metabolismo , Peso Corporal , Ração Animal/análise
8.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440575

RESUMO

Chemically defined diets are commonly used in amino acid (AA) requirement studies to allow for tight control of AA delivery. However, those diets are not representative of commercial diets in the market and are unpalatable. Methionine (Met) is usually the first limiting AA in cat diets, but little is known about its requirement for adult cats. Thus, the objectives of this study were: 1) to develop a semisynthetic diet limiting in Met and evaluate its effect on acceptance and feeding behavior in cats; and 2) to evaluate the effect of different sources and inclusions of Met on preference in cats fed the semisynthetic diet. A semisynthetic diet deficient in Met and total sulfur AA (TSAA) was developed. Healthy adult male cats (n = 9) were fed (0800 and 1600 h) the semisynthetic diet top dressed with DL-Met solution (T-DLM), to meet 120% of the TSAA requirement, for 8 d. Feed intake was measured and a 30-min video recording was taken at the 0800 h feeding to evaluate feeding behavior of the cats. Following the acceptability trial, two bowl tests were performed where first choice was recorded and intake ratio was calculated as consumed food (A/A + B). Three combinations were tested: semisynthetic diet deficient in Met (T-BASAL) vs. T-DLM; T-BASAL vs. diet sufficient in Met provided 2-hydroxy-4-(methylthio)-butanoic acid (T-MHA); and T-DLM vs. T-MHA. Average feed intake remained high throughout the acceptability period (94.5% intake of total offered), but some cats decreased intake, resulting in a decrease in BW (≤2.5% of initial BW) over time (P < 0.05). Behaviors were similar among days (P > 0.05) with the exception of grooming the chest and body (P < 0.05). No preferences were observed towards a specific treatment (Met source and level) during the two-bowl tests (P > 0.05) and agreed with the cats expressing similar feeding behaviors during the preference tests (P > 0.05). In conclusion, a semisynthetic diet deficient in Met was successfully developed and can be used in studies to evaluate the effects of low protein and AA supplemented diets. Cats seem to show no preference for Met source and/or inclusion level in a semisynthetic diet application, which is of benefit for future studies aiming to determine the Met requirement in this species.


Previous studies that determined the requirement of amino acids (AA) in cats utilized experimental diets that do not represent commercial cat diets available in the market. Using this type of diets can present a challenge when applying AA requirements to commercial diet production. Thus, the goals of this study were to: 1) develop a semisynthetic diet deficient in methionine (Met) for adult cats with the inclusion of intact ingredients and to evaluate the effect of diet on behavior and acceptance; and 2) investigate the preference of a semisynthetic diet with different levels (deficient and sufficient) and sources [DL-Met and 2-hydroxy-4-(methylthio)-butanoic acid] of Met. The semisynthetic diet was well accepted by most cats. No major differences were observed in feeding behavior and preference towards Met source and level of inclusion. However, improvement in texture is recommended to increase acceptance and prevent removal of cats in feeding studies up to three weeks.


Assuntos
Aminoácidos Sulfúricos , Metionina , Animais , Gatos , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais , Metionina/química , Estado Nutricional , Racemetionina
9.
J Anim Sci ; 100(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029013

RESUMO

Yeast-derived ß-glucans impact immunity, though their effects on gut permeability and inflammation are less understood. Most research has investigated other components of the yeast cell wall, such as the prebiotic mannan- and fructo-oligosaccharides. The objective of this study was to assess the effects of feeding a concentrated yeast product on markers of inflammation (serum amyloid A [SAA] and haptoglobin [Hp]) and oxidative status (malondialdehyde [MDA]), fecal products of fermentation, and gut permeability. Nineteen privately owned domestic Siberian huskies, and one Alaskan husky (9 females: 5 intact, 4 spayed; 11 males: 3 intact, 8 neutered), with an average age of 4.8 ± 2.6 yr and body weight (BW) of 25.6 ± 4.1 kg, were used in this study. Dogs were blocked and randomly allocated to one of two diet groups. Ten dogs received a dry extruded diet. The other 10 received the same diet top dressed with yeast for a daily ß-glucan dose of 7 mg/kg BW for 10 wk. Fecal collection, for evaluation of fecal metabolites, and scoring occurred weekly. Gut permeability was assessed using the chromium-labeled ethylenediamine tetra-acetic acid (Cr-EDTA) and iohexol markers prior to the initiation of dietary treatment and after 10 wk of treatment. Blood samples were collected premarker administration and 0.5, 1, 2, 3, 4, 5, and 6 h postadministration. Fasting concentrations of SAA, Hp, and MDA were measured on weeks -1, 2, 4, and 8. Incremental area under the curve (I-AUC) was calculated for serum iohexol and Cr-EDTA concentrations. All data were analyzed using PROC GLIMMIX of SAS with dog as random effect, and week as fixed effect and repeated measure. Dogs receiving treatment tended to have decreased I-AUC of Iohexol (P = 0.10) and Cr-EDTA (P = 0.06) between baseline and cessation of treatment compared to the change over time in I-AUC for control (Ctl) dogs. Treatment dogs had lower Hp concentrations (P ≤ 0.05) than Ctl. There were no differences between treatments for SAA and MDA concentrations (P > 0.05). Fecal arabinose concentrations were greater in treatment (Trt) dogs (P ≤ 0.05) compared to Ctl, though no other fecal metabolites were affected by treatment. There was no difference in the relative frequency of defecations scored at any fecal score between Trt and Ctl dogs, and mean score did not differ between groups (P > 0.10). These data suggest that concentrated brewer's yeast may have the potential to reduce gut permeability without impacting inflammatory status and markers of health in adult dogs.


This study evaluated the effects of concentrated brewer's yeast on gut health in dogs. Nineteen Siberian Huskies and one Alaskan husky were blocked and randomly allocated to one of two groups. Treatment dogs received a yeast supplement for 10 wk, while control dogs received no supplement. Dogs were administered two markers to assess intestinal permeability prior to start of treatment and following 10 wk of treatment. Blood samples were collected and analyzed for markers of inflammatory status (serum amyloid A [SAA] and Haptoglobin [Hp]) and oxidative status (serum malondialdehyde [MDA]). Fecal samples were collected weekly to assess fecal score as well as fecal metabolite concentrations. Intestinal permeability was reduced in treatment dogs following treatment, and no change was observed in the control group. Treatment dogs had lower Hp concentrations than control (Ctl), but there were no differences between treatments for SAA and MDA. Fecal arabinose concentrations were significantly greater in the treatment group when compared to control. There were no differences in the relative frequency of defecations scored at any fecal score between treatment and Ctl dogs, nor did mean score differ between the groups. This study suggests that concentrated brewer's yeast may reduce gut permeability and inflammation without detrimentally impacting markers of health in adult dogs.


Assuntos
Doenças do Cão , Saccharomyces cerevisiae , Masculino , Feminino , Cães , Animais , Ração Animal/análise , Iohexol , Ácido Edético , Dieta/veterinária , Inflamação/veterinária , Permeabilidade
10.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641141

RESUMO

Choline is an essential nutrient linked to hepatic lipid metabolism in many animal species, including cats. The current study investigated the serum lipid profiles, serum liver enzymes, respiratory quotients, and energy expenditures of overweight cats fed maintenance diets, in response to graded doses of supplemental dietary choline. Overweight (body condition score [BCS]: ≥6/9) adult male neutered cats (n = 14) were supplemented with five choline chloride doses for 3-wk periods, in a 5 × 5 Latin square design. Doses were based on individual body weight (BW) and the daily recommended allowance (RA) for choline (63 mg/kg BW0.67) according to the National Research Council. Doses were control (no additional choline: 1.2 × RA, 77 mg/kg BW0.67), 2 × RA (126 mg/kg BW0.67), 4 × RA (252 mg/kg BW0.67), 6 × RA (378 mg/kg BW0.67), and 8 × RA (504 mg/kg BW0.67). Choline was top-dressed over the commercial extruded cat food (3,620 mg choline/kg diet), fed once a day at maintenance energy requirements (130 kcal/kgBW0.4). Body weight and BCS were assessed weekly. Fasted blood samples were taken and indirect calorimetry was performed at the end of each 3-wk period. Serum was analyzed for cholesterol, high-density lipoprotein cholesterol (HDL-C), triglycerides, non-esterified fatty acids, glucose, creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), and alanine aminotransferase. Very low-density lipoprotein cholesterol (VLDL) and low-density lipoprotein cholesterol were calculated. Data were analyzed via SAS using proc GLIMMIX, with group and period as the random effects, and treatment as the fixed effect. Statistical significance was considered at P < 0.05. Body weight and BCS did not change (P > 0.05). Serum cholesterol, HDL-C, triglycerides, and VLDL increased with 6 × RA (P < 0.05). Serum ALP decreased with 8 × RA (P = 0.004). Choline at 4 × and 6 × RA decreased serum BUN (P = 0.006). Fed or fasted respiratory quotient and energy expenditure did not differ among dietary choline doses (P > 0.05). These results suggest that dietary choline supplementation at 6 × RA may increase hepatic fat mobilization through increased lipoprotein transport and beneficially support hepatic health in overweight cats. Future studies that combine these results with existing knowledge of feline weight loss and hepatic lipidosis are warranted.


Choline is an essential nutrient important for lipid metabolism in the liver of many mammals. In the present study, fourteen overweight cats had their commercial extruded cat food top-dressed with different amounts of choline chloride supplement. The amounts of choline were based on the individual body weights and the published recommended allowance (RA) for dietary choline intake in adult cats. The choline treatments were control (no additional choline added, 1.2 × RA), 2 × RA, 4 × RA, 6 × RA, and 8 × RA. The cats were separated into five groups. Each group received the choline treatments once daily for 3 wk per treatment. Choline at 6 × RA increased serum cholesterol, triglycerides, and lipoproteins. There were no significant differences in respiratory quotient or energy expenditure with choline intake. The results of this study suggest that choline at 6 × RA increases the transport of lipids from the liver. This may be beneficial in supporting liver health in overweight cats. Future studies should investigate supplementing choline to cats undergoing weight loss and those at risk of developing fatty liver.


Assuntos
Doenças do Gato , Sobrepeso , Animais , Peso Corporal , Gatos , Colesterol , Colina/farmacologia , Dieta/veterinária , Metabolismo Energético , Lipoproteínas LDL , Masculino , Sobrepeso/veterinária , Triglicerídeos
11.
Front Vet Sci ; 9: 855261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478602

RESUMO

It is currently unclear whether potential probiotics such as lactic acid bacteria could affect behavioral problems in birds. To this end, we assessed whether a supplementation of Lactobacillus rhamnosus JB-1 can reduce stress-induced severe feather pecking (SFP), feather damage and fearfulness in adult birds kept for egg laying. In parallel, we assessed SFP genotypic and phenotypic-related immune responses and aromatic amino acid status linked to neurotransmitter production. Social stress aggravated plumage damage, while L. rhamnosus treatment improved the birds' feather cover in non-stressed birds, but did not impact fearfulness. Our data demonstrate the significant impact of L. rhamnosus supplementation on the immune system. L. rhamnosus supplementation induced immunosuppressive regulatory T cells and cytotoxic T cells in both the cecal tonsils and the spleen. Birds exhibiting the SFP phenotype possessed lower levels of cecal tonsils regulatory T cells, splenic T helper cells and a lower TRP:(PHE+TYR). Together, these results suggest that bacteria may have beneficial effects on the avian immune response and may be useful therapeutic adjuncts to counteract SFP and plumage damage, thus increasing animal health and welfare.

12.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448863

RESUMO

While the raw pet food market continues to grow, the risk of bacterial contamination in these types of diets is a major concern, with Salmonella enterica and Listeria monocytogenes being the most frequently associated pathogens in raw pet food product recalls. dl-Methionine is included in some commercial feline kibble and canned diets to improve protein quality; however, an alternative to this is a liquid methionine supplement, 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa), which is also an organic acid. 2-Hydroxy-4-(methylthio)-butanoic acid has previously demonstrated similar efficacy to formic acid against pathogens in a liquid environment and may be a good candidate to inhibit S. enterica and L. monocytogenes in raw ground meat. First, the minimum inhibitory concentration and minimum bactericidal concentration of HMTBa against these pathogens under laboratory growth conditions were determined by measuring growth of pathogens over 36 h when exposed to 10 concentrations of HMTBa (0.10% to 1.00%) mixed with tryptic soy broth. 2-Hydroxy-4-(methylthio)-butanoic acid included at ≥0.50% was bactericidal to S. enterica and L. monocytogenes (P < 0.05). Next, five levels of HMTBa (0.50% to 1.25%) were included in raw ground meat mixtures inoculated with cocktails of S. enterica or L. monocytogenes, and contamination levels were determined at four timepoints: immediately, and after refrigerated storage (4 °C) at 24, 48, and 72 h after removal from freezer (24 h at -20 °C). 2-Hydroxy-4-(methylthio)-butanoic acid included as 1.25% of the meat mixture reduced S. enterica and L. monocytogenes compared with the control (P < 0.05); however, it did not result in total kill of either of these pathogens. Following this, feeding behaviors of seven domestic cats were assessed when offered a raw chicken diet treated with or without 1.25% HMTBa for 5 d each, after which a 2-d 2-choice preference test was conducted. Cats demonstrated a preference for raw diets without HMTBa, but still readily consumed diets with 1.25% HMTBa, suggesting that such a diet was still palatable to them.


Assuntos
Ração Animal , Listeria , Ração Animal/análise , Animais , Ácido Butírico , Gatos , Dieta/veterinária , Carne , Metionina , Salmonella
13.
J Anim Sci ; 99(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333630

RESUMO

Grain-based ingredients are replaced in part by pulse ingredients in grain-free pet foods. Pulse ingredients are lower in methionine and cysteine, amino acid (AA) precursors to taurine synthesis in dogs. Although recent work has investigated plasma and whole blood taurine concentrations when feeding grain-free diets, supplementation of a grain-free diet with various nutrients involved in the biosynthesis of taurine has not been evaluated. This study aimed to investigate the effects of supplementing a complete grain-free dry dog food with either methionine (MET), taurine (TAU), or methyl donors (choline) and methyl receivers (creatine and carnitine; CCC) on postprandial AA concentrations. Eight healthy Beagle dogs were fed one of the three treatments or the control grain-free diet (CON) for 7 d in a 4 × 4 Latin square design. On day 7, cephalic catheters were placed and one fasted sample (0 min) and a series of nine post-meal blood samples were collected at 15, 30, 60, 90, 120, 180, 240, 300, and 360 min. Data were analyzed as repeated measures using the PROC GLIMMIX function in SAS (Version 9.4). Dogs fed MET had greater plasma and whole blood methionine concentrations from 30 to 360 min after a meal (P < 0.0001) and greater plasma homocysteine concentrations from 60 to 360 min after a meal (P < 0.0001) compared with dogs fed CON, TAU, and CCC. Dogs fed TAU had greater plasma taurine concentrations over time compared with dogs fed CON (P = 0.02) but were not different than dogs fed MET and CCC (P > 0.05). In addition, most AAs remained significantly elevated at 6 h post-meal compared with fasted samples across all treatments. Supplementation of creatine, carnitine, and choline in grain-free diets may play a role in sparing the methionine requirement without increasing homocysteine concentrations. Supplementing these nutrients could also aid in the treatment of disease that causes metabolic or oxidative stress, including cardiac disease in dogs, but future research is required.


Assuntos
Metionina , Taurina , Animais , Dieta/veterinária , Suplementos Nutricionais , Cães , Grão Comestível , Homocisteína
14.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011778

RESUMO

The objective of this study was to determine the minimum requirement (MR) for methionine (Met), when cyst(e)ine (Cys) is provided in excess, in adult dogs of three different breed sizes using the indicator amino acid (AA) oxidation (IAAO) technique. In total, 12 adult dogs were used: 1 neutered and 3 spayed Miniature Dachshunds (4.8 ± 0.4 kg body weight [BW], mean ± SD), 4 spayed Beagles (9.5 ± 0.7 kg BW, mean ± SD), and 4 neutered Labrador Retrievers (31.8 ± 1.7 kg BW, mean ± SD). A deficient Met basal diet with excess Cys was formulated. Dogs were fed the basal diet randomly supplemented with different Met-Alanine (Ala) solutions to achieve final Met concentrations in experimental diets of 0.21%, 0.26%, 0.31%, 0.36%, 0.41%, 0.46%, and 0.66% (as-fed basis). After 2 d of adaptation to the experimental diets, dogs underwent individual IAAO studies. During the IAAO study day, the total feed was divided into 13 equal meals; at the sixth meal, dogs were fed a bolus of l-[1-13C]-phenylalanine (Phe), and thereafter, l-[1-13C]-Phe was supplied with every meal. The total production of 13CO2 during isotopic steady state was determined by the enrichment of 13CO2 in breath samples, and the total production of CO2 measured using indirect calorimetry. The mean MR for Met and the upper 95% confidence limit (CL) were determined using a two-phase linear mixed-effects regression model. For Miniature Dachshunds, the MR for Met was between the first two dietary Met concentrations and is, therefore, between 35.7 and 44.1 mg.kg BW-1·d-1 (0.21% to 0.26%, as-fed basis; no requirement could be determined on a metabolic BW basis). For Beagles and Labrador Retrievers, the MR for Met was 57.5 and 50.4 mg.kg BW-1·d-1, 107.7 and 121.8 mg/kg BW^0.75, or 0.338 and 0.360%, respectively (as-fed basis). The upper 95% CL of Met requirements was 77.9 and 72.4 mg.kg BW-1·d-1, 147.8 and 159.6 mg/kg BW^0.75,or 0.458 and 0.517% for Beagles, and Labradors, respectively (as-fed basis). When pooling data from Beagles and Labrador Retrievers, the MR and upper 95% CL were 56.0 and 75.8 mg.kg BW-1·d-1 or 118.4 and 150.5 mg/kg BW^0.75 or 0.360% and 0.482% (as-fed basis). In conclusion, the MR and the upper 95% CL for Met are different for Dachshunds when compared with Beagles and Labrador Retrievers. Using this low-protein diet, the estimated upper 95% CL Met requirement for Beagles and Labrador is higher than those recommended in the National Research Council (NRC), but NRC is similar to the estimated upper 95% CL for Dachshunds.


Assuntos
Aminoácidos/metabolismo , Cães/fisiologia , Metionina/metabolismo , Necessidades Nutricionais , Animais , Peso Corporal , Calorimetria Indireta/veterinária , Dieta/veterinária , Feminino , Masculino , Oxirredução , Fenilalanina/metabolismo
15.
Transl Anim Sci ; 4(3): txaa082, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32734145

RESUMO

There is a lack of knowledge regarding the lysine (Lys) requirements of mature dogs and whether there are breed differences. The present study aimed to determine the Lys requirement in three breeds of mature dogs using the indicator amino acid oxidation (IAAO) technique. Thirteen adult dogs were used, four Miniature Dachshunds (5.39 ± 0.71 kg; 1.05 ± 0.02 yr old, mean ± SD), four Beagles (8.09 ± 0.40 kg; 5.03 ± 0.09 yr old, mean ± SD), and five Labrador Retrievers (29.42 ± 2.04 kg; 3.30 ± 0.69 yr old, mean ± SD). After 14 d of adaptation to a basal extruded kibble diet, dogs were fed a test diet mildly deficient in Lys (Lys concentration = 0.36%) at 17 (Miniature Dachshunds) or 13 g/kg body weight (BW; Beagles and Labradors) for 2 d. The test diet was supplemented with one of seven isonitrogenous Lys-Ala solutions, resulting in a final dietary Lys concentration of 0.36%, 0.40%, 0.44%, 0.50%, 0.54%, 0.58%, and 0.62% (as-fed basis). Dogs received dietary concentrations of Lys in random order and no dog received the same order. Following 2 d of adaptation to the experimental diets, the dogs underwent IAAO studies. During the IAAO studies, total daily feed was divided in 13 equal meals. At the sixth meal, dogs were fed a bolus of L-[1-13C]-Phe (9.40 mg/kg BW); thereafter, L-[1-13C]-Phe was supplied with every meal (2.4 mg/kg BW). Total production of 13CO2 (F13CO2) during isotopic steady state was determined by enrichment of 13CO2 of breath samples and total production of CO2, measured using indirect calorimetry. A two-phase linear regression model was used to derive the mean Lys requirement, defined as the breakpoint, and the upper 95% confidence limit was calculated as the recommended allowance (RA) for Lys intake. For Miniature Dachshunds, the study was repeated with a feed intake of 14 g/kg BW, but Lys requirements could not be determined at either feed intake, suggesting a requirement below the lowest concentration and intake. Mean Lys requirements for Beagles and Labradors were 0.455% (59.16 mg/kg BW) and 0.440% (57.19 mg/kg BW), respectively, on a dry matter basis. Pooling the data for these breeds provides a mean estimate of the Lys requirement at 0.448% (58.21 mg/kg BW) with an upper 95% CL of 0.526% (68.41 mg/kg BW) on a dry matter basis. In conclusion, the Lys requirements of Beagles and Labradors are similar, while the requirement for Miniature Dachshunds is undetermined and likely lower. The estimated Lys requirement for Beagles and Labradors is higher than the National Research Council recommendation.

16.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386296

RESUMO

Thirty five barrows (initial body weight [BW]: 15.1 ± 1.0 kg) were used to determine the effect of partially replacing Gly + Ser with Thr in reduced crude protein (CP) diets on growth performance, protein deposition in carcass and viscera, and skin collagen abundance during the late nursery phase to 25 kg BW. Pigs were individually fed one of five iso-nitrogenous diets (n = 7) for 21 d. The basal diet met estimated essential amino acids (AA) requirements by using all essential AA plus Gly and Ser in free form (CON; 12.1% CP; as-fed, analyzed contents). The remaining four diets were formulated by reducing total Gly and Ser concentrations to 60% or 20% of the CON diet. The N removed with Gly and Ser was replaced with either crystalline Thr or Glu. Total analyzed Thr made up either 1.59% (T1; 12.5% CP) or 2.34% (T2; 12.2% CP) of the Thr-supplemented diets, and total analyzed Glu made up either 3.47% (G1; 12.7% CP) or 4.64% (G2; 12.9% CP) of the Glu-supplemented diets. Pigs were slaughtered on day 21 to determine body composition and skin collagen abundance via bright field microscopy. Overall, average daily gain (ADG) and G:F and final carcass weights were greater for pigs fed diets supplemented with Glu (G1 + G2) vs. those fed diets supplemented with Thr (T1 + T2; P < 0.05, P = 0.060, and P = 0.050 for ADG, G:F, and final carcass weight, respectively); intermediate values were observed for CON. Nitrogen retention in carcass plus viscera and the AA profile of deposited protein in the carcass were not influenced by dietary treatment. Pigs fed the T2 and G2 diets had greater retention of Thr (vs. CON and G2) and Glu (vs. CON and T2) in the viscera protein, respectively (P < 0.05). The apparent utilization efficiency of standardized ileal digestible Thr for protein deposition in carcass plus viscera was less for pigs fed T2 (15.1%) vs. those fed CON (56.7%) or G2 (58.6% ± 2.9%) diets (P < 0.001). Only pigs fed T1 had skin collagen abundance not different from CON; pigs fed G1, G2, and T2 had reduced skin collagen abundance compared with CON and T1 (P < 0.01). Using Glu as an N source when Gly and Ser were reduced to 60% and 20% of CON in reduced CP diets maintained ADG for pigs between 15 and 25 kg BW, whereas supplying Thr as a N source reduced ADG and carcass weight. When dietary Gly and Ser were supplied at 60% of CON, only Thr supplementation rescued skin collagen abundance. Therefore, supplemental Thr at excess levels is not sufficient to replace N from Gly and Ser in reduced CP diets fed to late nursery pigs, despite supporting skin collagen abundance as a secondary indicator of Gly status.


Assuntos
Composição Corporal/efeitos dos fármacos , Colágeno/metabolismo , Glicina/farmacologia , Serina/farmacologia , Suínos/fisiologia , Treonina/farmacologia , Ração Animal/análise , Animais , Dieta , Dieta com Restrição de Proteínas , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Glicina/administração & dosagem , Masculino , Serina/administração & dosagem , Pele/química , Fenômenos Fisiológicos da Pele , Treonina/administração & dosagem , Vísceras , Aumento de Peso/efeitos dos fármacos
17.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315027

RESUMO

Exercise improves the health of dogs; however, the extreme exertion experienced by sled dogs may lead to variable metabolic and fecal characteristics. Nutritional interventions, such as dietary tryptophan (Trp), may reduce the prevalence of these exercise-induced disturbances. Sporting diets tend to have high crude protein concentrations in contrast to adult maintenance diets and this results in less Trp relative to other amino acids (AA). Therefore, sporting dogs represent an ideal cohort to assess the effects of supplemental Trp. The objective was to evaluate the effects of supplemental dietary Trp and an incremental training regimen on AA and serotonin status, fecal scores and metabolites, and body composition in client-owned Siberian huskies. Sixteen dogs (nine females and seven males) were used, with a mean age of 4.8 ± 2.5 yr and body weight (BW) of 24.3 ± 4.3 kg. Dogs were blocked for sex, age, and BW and randomly allocated into two groups with eight fed a dry extruded control diet (Ctl) and eight fed Ctl supplemented with Trp to reach a Trp:large-neutral AA (LNAA) ratio of 0.075:1 (treatment, Trt). The exercise regimen was designed to increase in distance each week, but weather played a role in setting the daily distance. Each week BW was recorded and food allotments were adjusted to maintain initial BW. Pre and post-exercise blood samples were taken every 3 wk, dogs then received a meal followed by 1, 2, and 4 h post meal blood collections (serum AA, serotonin). Stool collection and scoring occurred each week and body composition was measured on weeks -1 and 11. Serotonin, AA, fecal metabolite, and body composition data were analyzed using PROC MIXED of SAS with dog as a random effect and week and Trt as fixed effects. Stool score data were analyzed using PROC FREQ to compare stool score and Trt, and PROC CORR was used to analyze associations between fecal score, temperature, humidity, and run distance. Dogs on Trt had greater fasted Trp compared with baseline, greater post-meal Trp and serotonin compared with baseline, greater post-meal Trp compared with fasted, and greater post-meal Trp and serotonin compared with Ctl (P < 0.05). Fecal data indicated that Trp improved stool scores (P < 0.05) yet had no effect on fecal metabolites. An overall increase in lean and decrease in fat mass was found (P < 0.05), but Trt had no effect on body composition. Optimization of the dietary Trp:LNAA ratio may help to improve GI health without compromising performance in actively training sled dogs.


Assuntos
Aminoácidos/metabolismo , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais/análise , Cães/fisiologia , Serotonina/metabolismo , Triptofano/administração & dosagem , Ração Animal/análise , Animais , Peso Corporal/efeitos dos fármacos , Dieta/veterinária , Fezes/química , Feminino , Masculino , Condicionamento Físico Animal , Distribuição Aleatória
18.
J Anim Sci ; 98(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108874

RESUMO

Threonine (Thr) requirements for immature (growing) Beagles have been determined, but little knowledge is available on Thr requirements for maintenance in mature dogs. Moreover, differences of Thr requirements among different breeds or sizes of adult dogs have not been investigated. The objective of the present study was to determine Thr requirements in adult dogs of three different breeds using the indicator amino acid oxidation (IAAO) technique. In total, 13 adult dogs were used, 4 Miniature Dachshunds (5.8 ± 0.4 kg body weight [BW]; 3 spayed and 1 neutered), 4 spayed Beagles (9.3 ± 0.6 kg BW), and 5 neutered Labrador Retrievers (30.5 ± 1.7 kg BW). Dogs were fed a Thr-deficient diet (Thr = 0.23%) and randomly allocated to receiving one of seven concentrations of Thr supplementation (final Thr concentration in experimental diets was 0.23%, 0.33%, 0.43%, 0.53%, 0.63%, 0.73%, and 0.83%; as fed basis) for 2 d. After 2 d of adaptation to the experimental diets, dogs underwent individual IAAO studies. During the IAAO studies, total daily feed was divided into 13 equal meals; at the sixth meal, dogs were fed a bolus of l-[1-13C]-Phenylalanine (Phe) (9.40 mg/kg BW), and thereafter, l-[1-13C]-Phe (2.4 mg/kg BW) was supplied with every meal. Before feeding the next experimental diet, dogs were fed a Thr-adequate basal diet for 4 d (Thr = 0.80% as fed basis) in known amounts that maintained individual dog BW. Total production of 13CO2 during isotopic steady state was determined by enrichment of 13CO2 in breath samples and total production of CO2 measured using indirect calorimetry. The mean requirements for Thr, defined as the breakpoint, and the 95% confidence interval (CI) were determined using a two-phase linear regression model. For Miniature Dachshunds, the two-phase model was not significant, and Thr requirements could not be determined. Mean Thr requirements for Beagles and Labradors were 72.2 and 64.1 mg/kg BW on an as-fed basis, respectively. The requirement for Thr between these two dog breeds was not different (P > 0.10). Thus, the data for Beagles and Labradors were pooled and a mean requirement for Thr was determined at 66.9 mg/kg BW, and the 95% CI was estimated at 84.3 mg/kg BW. In conclusion, estimated Thr requirements for Beagles and Labradors did not differ, and these recommendations are higher than those suggested by NRC (2006) and AAFCO (2014) for adult dogs at maintenance.


Assuntos
Aminoácidos/metabolismo , Tamanho Corporal/fisiologia , Cães/fisiologia , Treonina/metabolismo , Ração Animal/análise , Animais , Peso Corporal , Calorimetria Indireta/veterinária , Dieta/veterinária , Feminino , Masculino , Necessidades Nutricionais , Oxirredução , Fenilalanina/metabolismo
19.
J Anim Sci ; 98(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31965147

RESUMO

A total of 96 newly weaned barrows (initial body weight [BW]: 6.3 ± 0.5 kg) were used to determine the effect of a low crude protein (CP) diet supplemented with Gly and Ser on growth and skin collagen abundance. Barrows were assigned to one of three experimental diets in a three-phase feeding program fed for 35 days (n = 8; pen was the experimental unit): 1) corn-soybean meal diet (CON; 20.3% to 23.1% CP; as-fed, analyzed contents); 2) low CP diet (14.8% to 21.4% CP) supplemented with Gly and Ser (G + S) to the same concentrations as CON; 3) low CP diet supplemented with Glu to maintain the same CP concentration as the G + S diet (GLU; 15.0% to 22.1% CP). On days 21 and 35, eight pigs per treatment were euthanized for the determination of physical and chemical body composition and skin collagen abundance. Pigs fed the CON diet had greater overall ADG and final BW compared to pigs fed GLU and G + S (P < 0.01). Over the entire 35-day experimental period, ADFI was not influenced by dietary treatment but G:F tended to be greater for pigs fed CON than G + S (P = 0.084), while intermediate values were observed for GLU. Carcass weights on days 21 and 35 were greater for pigs fed CON than G + S or GLU (P < 0.01). Viscera weights on day 21 were greater for CON than G + S and GLU (P < 0.05) and on day 35 were greater for CON than G + S (P < 0.05) with intermediate values observed for GLU. The N intake (g/d) between days 0 and 35 was greater for CON than G + S or GLU (P < 0.05) and N retention in combined carcass and viscera was greater for CON than G + S (P < 0.01) with intermediate values observed for GLU. No treatment effects were observed for efficiency of N utilization. Between days 0 and 21 however, the efficiency of using dietary N for N retention in carcass and viscera tended to be less for pigs fed CON vs. GLU (73.8% vs. 91.6%), while intermediate values were observed for G + S (84.3%; P = 0.095). Pigs fed CON and G + S diets had greater skin collagen abundance than pigs fed GLU on days 21 and 35 (P < 0.01). Supplementing low CP diets with Glu or with Gly and Ser at the levels used in the current study did not maintain ADG or combined carcass and viscera N retention and only the G + S diet supported skin collagen abundance not different from pigs fed CON. The importance of meeting essential AA requirements for growth are well accepted, but supplementing specific NEAA may be needed when feeding reduced CP diets to newly weaned pigs to support secondary indicators of AA status, such as skin collagen abundance.


Assuntos
Colágeno/metabolismo , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Glicina/farmacologia , Serina/farmacologia , Suínos/crescimento & desenvolvimento , Ração Animal/análise , Animais , Composição Corporal , Dieta/veterinária , Glicina/administração & dosagem , Masculino , Serina/administração & dosagem , Pele/metabolismo , Glycine max , Suínos/fisiologia
20.
J Anim Sci ; 97(8): 3274-3285, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363781

RESUMO

Tryptophan (Trp) is an indispensable amino acid (AA) for dogs of all life stages; however, although Trp requirements for growing dogs are derived from 3 dose-response studies, there are no empirical data on Trp requirements for adult dogs at maintenance. The study objective was to determine Trp requirements of adult dogs of 3 different breeds using the indicator amino acid oxidation (IAAO) technique. Four spayed or neutered Miniature Dachshunds (5.28 ± 0.29 kg BW), 4 spayed Beagles (9.32 ± 0.41 kg BW), and 5 neutered Labrador Retrievers (30.51 ± 2.09 kg BW) were used. After a 14-d adaptation to a Trp-adequate basal diet (Trp = 0.482% dry matter), all dogs were fed a mildly Trp-deficient diet for 2 d (Trp = 0.092% dry matter) before being randomly allocated to receiving 1 of 7 concentrations of Trp supplementation (final Trp content in experimental diets was 0.092, 0.126, 0.148, 0.182, 0.216, 0.249, and 0.283% dry matter) and all dogs received all Trp treatments. After 2-d adaptation to the experimental diets, dogs underwent individual IAAO studies. Total feed was divided in 13 equal meals; at the sixth meal, dogs were fed a bolus of L-[1-13C]-Phenylalanine (Phe) (9.40 mg/kg BW), and thereafter, L-[1-13C]-Phe was supplied (2.4 mg/kg BW) with every meal. Total production of 13CO2 during isotopic steady state was determined by enrichment of 13CO2 in breath samples and total production of CO2 measured using indirect calorimetry. The maintenance requirement for Trp and the 95% confidence interval (CI) were determined using a 2-phase linear regression model. Mean Trp requirements were estimated at 0.154, 0.218, and 0.157% (dry-matter) for Dachshunds, Beagles, and Labradors, respectively. The upper 95% CI were 0.187, 0.269, and 0.204% (dry-matter) for Dachshunds, Beagles, and Labradors. In conclusion, estimated Trp requirements are higher for Beagles compared with Labradors or Dachshunds, and all estimated requirements are higher than those currently recommended by the NRC and AAFCO.


Assuntos
Aminoácidos/metabolismo , Cães/fisiologia , Necessidades Nutricionais , Triptofano/metabolismo , Aminoácidos Essenciais/metabolismo , Animais , Tamanho Corporal , Peso Corporal , Calorimetria Indireta/veterinária , Dieta/veterinária , Feminino , Masculino , Oxirredução , Fenilalanina/metabolismo , Distribuição Aleatória , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA