Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 199: 111321, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33989619

RESUMO

A global upsurge in emergence and spread of antibiotic resistance (ABR) in bacterial populations is a serious threat for human health. Unfortunately, ABR is no longer confined to nosocomial environments and is frequently reported from community microbes as well. The ABR is resulting in shrinking potent antibiotics pool and thus necessitating novel and alternative therapies and therapeutics. Current investigation was aimed to assess the synergistic potential of a synthesized, phytomolecule-loaded, polysaccharide-stabilized metallic nanoparticles (NPs) against Pseudomonas aeruginosa (PA) and Escherichia coli (EC) isolated from river waters. ABR profiling of these strains characterized them as multidrug resistant (MDR). Synthesized embelin (Emb, isolated from Embelia tsjeriam-cottam)-loaded, chitosan-gold (Emb-Chi-Au) NPs were assessed for their potential synergistic activity with ciprofloxacin (CIP) via checker-board assay and time-kill curve analysis. The NPs reduced the minimal inhibitory concentration (MIC) of CIP by 16- and 4-fold against MDR PA (PA-r) and EC (EC-r) strains, respectively. Fractional inhibitory concentration (FIC) indices with ≤0.5 values confirmed the synergy between the Emb-Chi-Au NPs and CIP, which was further confirmed at ½ MICs in both PA-r and EC-r via time-kill curve analysis. In order to decipher the mode of action, efflux pump inhibitory effects of Emb-Chi-Au NPs were evaluated in terms of the increase in the EtBr mediated fluorescence in control versus NP-treated MDR strains. Molecular docking based in silico simulations were used to predict the interactions between Emb and the active sites of the efflux pump related proteins in PA-r (MexA, MexB and OprM) and EC-r (AcrA, AcrB and TolC), which revealed the probable bond formation between Emb and respective amino acid residues.


Assuntos
Quitosana , Proteínas de Escherichia coli , Nanopartículas Metálicas , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Benzoquinonas , Ciprofloxacina/farmacologia , Escherichia coli , Ouro , Humanos , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Pseudomonas aeruginosa
2.
3 Biotech ; 9(1): 31, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30622869

RESUMO

Essential oils (EOs) obtained from aerial parts of Pogostemon deccanensis were analyzed for GC-MS profiling, and evaluated for antioxidant, anti-inflammatory, and anti-proliferative activities. GC-MS analysis revealed a total of 47 constituents, establishing the EOs rich in sesquiterpene with > 20 sesquiterpenes constituting around 77% of the total EO yield. Major constituents included Curzerene (Benzofuran, 6-ethenyl-4,5,6,7-tetrahydro-3,6-dimethyl-5-isopropenyl-, trans-) (26.39%) and epi-Cadinol (22.68%), Ethanone, 1-(2,4,6-trihydroxyphenyl) (6.83%, Acetophenones), and Boldenone (3.47%, anabolic steroid). EOs found to be rich in phytochemicals attributed for antioxidant potentials of aromatic/medicinal plants, viz., flavonoids (2.71 µg quercetin equivalents g-1 EO), total phenols (3.94 µg gallic acid equivalents (GAE) g-1 EO), carotenoids (14.3 µg ß-carotene equivalents g-1 EO), and ascorbic acid (2.21 µg ascorbic acid equivalents g-1 EO). P. deccanensis EOs exhibited striking antioxidant activities assessed by wide range of assays including ferric reducing antioxidant potential (FRAP, 255.3 GAE at 2 µg mL-1 EO), total antioxidant activity (TAA, 264.3 GAE at 2 µg ml-1) of EO, DPPH (65% inhibition at 2 µg mL-1), and OH (58% inhibition at 2 µg mL-1) scavenging. Interestingly, EOs showed considerably higher anti-lipid peroxidation activity than the standard antioxidant molecule ascorbic acid, with 50% protection by 1.29 µg mL-1 EO against 20.0 µg mL-1 standard. EOs showed strong anti-inflammatory activity with 50% inhibition at 1.95 µg mL-1 EO. The anti-proliferative activity of EOs was tested against mouse cancer cell line and the EOs proved a potent anti-proliferative agent with only 2.1% cell survival at 2 µg mL-1 EO, whereas the EOs were largely non-toxic-to-normal (non-cancerous) cells with approximately 80% cell survival at the 2 µg mL-1 EOs. This being the first attempt of phytochemical profiling and wide array of biological activities of P. deccanensis EOs holds significance as the striking activities were observed at very low concentrations, in some cases at lower than the commercial standards, and has, therefore, great potential for pharmaceutical or commercial exploration.

3.
Front Microbiol ; 9: 2990, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619113

RESUMO

Antibiotics, once considered the lifeline for treating bacterial infections, are under threat due to the emergence of threatening antimicrobial resistance (AMR). These drug-resistant microbes (or superbugs) are non-responsive to most of the commonly used antibiotics leaving us with few treatment options and escalating mortality-rates and treatment costs. The problem is further aggravated by the drying-pipeline of new and potent antibiotics effective particularly against the drug-resistant strains. Multidrug efflux pumps (EPs) are established as principal determinants of AMR, extruding multiple antibiotics out of the cell, mostly in non-specific manner and have therefore emerged as potent drug-targets for combating AMR. Plants being the reservoir of bioactive compounds can serve as a source of potent EP inhibitors (EPIs). The phyto-therapeutics with noteworthy drug-resistance-reversal or re-sensitizing activities may prove significant for reviving the otherwise fading antibiotics arsenal and making this combination-therapy effective. Contemporary attempts to potentiate the antibiotics with plant extracts and pure phytomolecules have gained momentum though with relatively less success against Gram-negative bacteria. Plant-based EPIs hold promise as potent drug-leads to combat the EPI-mediated AMR. This review presents an account of major bacterial multidrug EPs, their roles in imparting AMR, effective strategies for inhibiting drug EPs with phytomolecules, and current account of research on developing novel and potent plant-based EPIs for reversing their AMR characteristics. Recent developments including emergence of in silico tools, major success stories, challenges and future prospects are also discussed.

4.
Appl Microbiol Biotechnol ; 99(24): 10655-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26362684

RESUMO

Pseudomonas aeruginosa is a leading opportunistic pathogen and its expanding drug resistance is a growing menace to public health. Its ubiquitous nature and multiple resistance mechanisms make it a difficult target for antimicrobial chemotherapy and require a fresh approach for developing new antimicrobial agents against it. The broad-spectrum antibacterial effects of silver nanoparticles (SNPs) make them an excellent candidate for use in the medical field. However, attempts made to check their potency against extensively drug-resistant (XDR) microbes are meager. This study describes the biosynthesis and biostabilization of SNPs by Helicteres isora aqueous fruit extract and their characterization by ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. Majority of SNPs synthesized were of 8--20-nm size. SNPs exhibited dose-dependent antibacterial activities against four XDR P. aeruginosa (XDR-PA) clinical isolates as revealed by growth curves, with a minimum inhibitory concentration of 300 µg/ml. The SNPs exhibited antimicrobial activity against all strains, with maximum zone of inhibition (16.4 mm) in XRD-PA-2 at 1000 µg/ml. Amongst four strains, their susceptibilities to SNPs were in the following order: XDR-PA-2 > XDR-PA-4 > XDR-PA-3 > XDR-PA-1. The exposure of bacterial cells to 300 µg/ml SNPs resulted into a substantial leakage of reducing sugars and proteins, inactivation of respiratory chain dehydrogenases, and eventual cell death. SNPs also induced lipid peroxidation, a possible underlying factor to membrane porosity. The effects were more pronounced in XDR-PA-2 which may be correlated with its higher susceptibility to SNPs. These results are indicative of SNP-induced turbulence of membranous permeability as an important causal factor in XDR-PA growth inhibition and death.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Malvaceae/metabolismo , Nanopartículas/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/metabolismo , Prata/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação , Prata/química , Análise Espectral
5.
Indian J Exp Biol ; 52(11): 1112-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25434107

RESUMO

Various parameters including explant-type, medium compositions, use of phytohormones and additives were optimized for direct and indirect regeneration of E. ochreata, a medicinal orchid under threat. Protocorm-like-bodies (PLBs) proved to be the best explants for shoot initiation, proliferation and callus induction. Murashige and Skoog's (MS) medium containing 2.5 mg L(-1) 6-benzylaminopurine (BAP), 1.0 mg L(-1) kinetin (Kin) and additives (adenine sulfate, arginine, citric acid, 30 mg L(-1) each and 50 mg L(-1) ascorbic acid) was optimal for shoot multiplication (12.1 shoots and 7.1 PLBs per explant with synchronized growth), which also produced callus. Shoot number was further increased with three successive subcultures on same media and approximately 40 shoots per explant were achieved after 3 cycles of 30 days each. Additives and casein hydrolysate (CH) showed advantageous effects on indirect shoot regeneration via protocorm-derived callus. Optimum indirect regeneration was achieved on MS containing additives, 500 mg L(-1) CH, 2.5 mg L(-1) BAP and 1.0 mg L(-1) Kin with 30 PLBs and 6 shoots per callus mass (approximately 5 mm size). The shoots were rooted (70% frequency) on one by fourth-MS medium containing 2.0 mg L(-1) indole-3-butyric acid, 200 mg L(-1) activated charcoal and additives. The rooted plantlets were hardened and transferred to greenhouse with 63% survival rate. Flow-cytometry based DNA content analysis revealed that the ploidy levels were maintained in in vitro regenerated plants. This is the first report for in vitro plant regeneration in E. ochreata.


Assuntos
Orchidaceae/fisiologia , Técnicas de Cultura de Tecidos , Ácido Ascórbico/farmacologia , Caseínas/farmacologia , Cromossomos de Plantas , Ácido Cítrico/farmacologia , Meios de Cultura/farmacologia , Citocininas/farmacologia , Ácidos Indolacéticos/farmacologia , Orchidaceae/genética , Orchidaceae/crescimento & desenvolvimento , Organoides/efeitos dos fármacos , Organoides/fisiologia , Células Vegetais/efeitos dos fármacos , Células Vegetais/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/fisiologia , Ploidias , Regeneração , Rizoma/efeitos dos fármacos , Rizoma/crescimento & desenvolvimento
6.
Indian J Med Res ; 132: 94-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20693597

RESUMO

BACKGROUND & OBJECTIVES: The multiple drug resistance (MDR) is a serious health problem and major challenge to the global drug discovery programmes. Most of the genetic determinants that confer resistance to antibiotics are located on R-plasmids in bacteria. The present investigation was undertaken to investigate the ability of organic extract of the fruits of Helicteres isora to cure R-plasmids from certain clinical isolates. METHODS: Active fractions demonstrating antibacterial and antiplasmid activities were isolated from the acetone extracts of shade dried fruits of H. isora by bioassay guided fractionation. Minimal inhibitory concentration (MIC) of antibiotics and organic extracts was determined by agar dilution method. Plasmid curing activity of organic fractions was determined by evaluating the ability of bacterial colonies (pre treated with organic fraction for 18 h) to grow in the presence of antibiotics. The physical loss of plasmid DNA in the cured derivatives was further confirmed by agarose gel electrophoresis. RESULTS: The active fraction did not inhibit the growth of either the clinical isolates or the strains harbouring reference plasmids even at a concentration of 400 microg/ml. However, the same fraction could cure plasmids from Enterococcus faecalis, Escherichia coli, Bacillus cereus and E. coli (RP4) at curing efficiencies of 14, 26, 22 and 2 per cent respectively. The active fraction mediated plasmid curing resulted in the subsequent loss of antibiotic resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The physical loss of plasmid was also confirmed by agarose gel electrophoresis. INTERPRETATION & CONCLUSIONS: The active fraction of acetone extract of H. isora fruits cured R-plasmids from Gram-positive and Gram-negative clinical isolates as well as reference strains. Such plasmid loss reversed the multiple antibiotic resistance in cured derivatives making them sensitive to low concentrations of antibiotics. Acetone fractions of H. isora may be a source to develop antiplasmid agents of natural origin to contain the development and spread of plasmid borne multiple antibiotic resistance.


Assuntos
Bacillus cereus/genética , Resistência a Múltiplos Medicamentos/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Frutas/química , Malvaceae/química , Extratos Vegetais/farmacologia , Fatores R/genética , Acetona , Bacillus cereus/efeitos dos fármacos , Fracionamento Químico , Eletroforese em Gel de Ágar , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Índia , Testes de Sensibilidade Microbiana , Fatores R/efeitos dos fármacos
7.
J Ethnopharmacol ; 128(1): 251-3, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20045453

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eulophia nuda L. (Orchidaceae) is a medicinally important terrestrial orchid used for the treatment of tumours and various health problems by the local healers throughout the Western Ghats region in Maharashtra (India). AIM OF THE STUDY: To isolate the active molecule from Eulophia nuda and to study its cytotoxic potential against human cancer cells. MATERIALS AND METHODS: The crude methanolic extract of Eulophia nuda tubers was fractionated by stepwise gradient of the solvents-chloroform-methanol to isolate the pure compound. Isolated pure compound was assessed for its cytotoxic potential against human breast cancer cell lines, MCF-7 and MDA-MB-231 using MTT assay. Structure elucidation of the isolated active compound was carried out by extensive spectroscopic analysis including (1)H NMR, (13)C NMR, NOESY, COSY, LC-MS and IR. RESULTS: The isolated active molecule was identified as phenanthrene derivative 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol. This compound showed good antiproliferative activity against human breast cancer cell lines MCF-7 (91%) and MDA-MB-231 (85%) at 1000 microg/ml concentration. CONCLUSION: 9,10-Dihydro-2,5-dimethoxyphenanthrene-1,7-diol from Eulophia nuda tubers showed good growth suppressive effect against human cancer cell lines MCF-7 and MDA-MB-231 making it a potential biomolecule against human cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Orchidaceae/química , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química
8.
J Ethnopharmacol ; 123(3): 522-5, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19501283

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alpinia galanga (L.) Swartz is traditionally used in the treatment of various ailments across India, China, and Southeast Asian countries. In India it is a reputed drug in indigenous system of medicine and largely used as antibacterial and antiseptic. In southern India the rhizomes has been used as a domestic remedy against bacterial infections. AIM OF THE STUDY: To identify a potential antiplasmid compound from Alpinia galanga against multi-drug resistant bacteria. MATERIALS AND METHODS: The crude rhizome extract of Alpinia galanga was prepared in acetone. Antibacterial activity was checked by MIC and antiplasmid activity was checked by SIC. The principal compound responsible for the antiplasmid activity, in the crude extract, was identified by bioassay guided fractionation using hexane-acetone. Antibiotic resistance profile of plasmid harboring strains and plasmid cured strains was determined by disc diffusion method. RESULTS: The crude acetone extract of the rhizomes of Alpinia galanga exhibited antiplasmid activity against Salmonella typhi, Escherichia coli and vancomycin resistant Enterococcus faecalis with an efficiency of 92%, 82% and 8% respectively at 400 microg/ml SIC. The principal compound responsible for the activity was identified as 1'-acetoxychavicol acetate. 1'-Acetoxychavicol acetate demonstrated the ability to cure plasmid encoded antibiotic resistance in various multi-drug resistant bacterial strains of clinical isolates such as Enterococcus faecalis, Salmonella typhi, Pseudomonas aeruginosa, Escherichia coli and Bacillus cereus with curing efficiency of 66%, 75%, 70%, 32% and 6% respectively at SIC of 400-800 microg/ml. CONCLUSION: 1'-Acetoxychavicol acetate mediated R-plasmid curing significantly reduced the minimal inhibitory concentration of antibiotics required to inhibit growth of bacteria, thus making the antibiotic treatment more effective.


Assuntos
Alpinia/química , Bactérias/efeitos dos fármacos , Álcoois Benzílicos/farmacologia , Extratos Vegetais/farmacologia , Plasmídeos/efeitos dos fármacos , Bactérias/genética , Bactérias/patogenicidade , Álcoois Benzílicos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química , Plasmídeos/genética , Rizoma
9.
Int J Antimicrob Agents ; 32(5): 405-10, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18718743

RESUMO

Bioassay-guided fractionation of an aqueous methanolic extract of Dioscorea bulbifera L. bulbs was performed using organic solvents. A novel plasmid-curing compound was identified as 8-epidiosbulbin E acetate (EEA) (norditerpene) on the basis of modern spectroscopic analysis and X-ray crystallography. EEA exhibited broad-spectrum plasmid-curing activity against multidrug-resistant (MDR) bacteria, including vancomycin-resistant enterococci. EEA cured antibiotic resistance plasmids (R-plasmids) from clinical isolates of Enterococcus faecalis, Escherichia coli, Shigella sonnei and Pseudomonas aeruginosa with 12-48% curing efficiency. The reference plasmids of Bacillus subtilis (pUB110), E. coli (RP4), P. aeruginosa (RIP64) and Salmonella typhi (R136) were cured with efficiency ranging from 16% to 64%. EEA-mediated R-plasmid curing decreased the minimal inhibitory concentration of antibiotics against MDR bacteria, thus making antibiotic treatment more effective. The antibiotic resistance pattern revealed that the compound was effective in the reversal of bacterial resistance to various antibiotics. In addition, the compound did not show any cytotoxicity against a broad range of human cancer cell lines, namely MCF-7 (breast cancer), SiHa (cervical cancer) and A431 (epidermal carcinoma), and hence has the potential to be used as a lead compound for drug discovery programmes.


Assuntos
Antibacterianos/farmacologia , Dioscorea/química , Diterpenos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Plasmídeos/efeitos dos fármacos , Antibacterianos/biossíntese , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/genética , Diterpenos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Conformação Molecular , Extratos Vegetais/química , Raízes de Plantas/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA