Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 19(Suppl 18): 486, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577754

RESUMO

BACKGROUND: The National Cancer Institute drug pair screening effort against 60 well-characterized human tumor cell lines (NCI-60) presents an unprecedented resource for modeling combinational drug activity. RESULTS: We present a computational model for predicting cell line response to a subset of drug pairs in the NCI-ALMANAC database. Based on residual neural networks for encoding features as well as predicting tumor growth, our model explains 94% of the response variance. While our best result is achieved with a combination of molecular feature types (gene expression, microRNA and proteome), we show that most of the predictive power comes from drug descriptors. To further demonstrate value in detecting anticancer therapy, we rank the drug pairs for each cell line based on model predicted combination effect and recover 80% of the top pairs with enhanced activity. CONCLUSIONS: We present promising results in applying deep learning to predicting combinational drug response. Our feature analysis indicates screening data involving more cell lines are needed for the models to make better use of molecular features.


Assuntos
Aprendizado Profundo/tendências , Avaliação Pré-Clínica de Medicamentos/métodos , Linhagem Celular Tumoral , Humanos , National Cancer Institute (U.S.) , Redes Neurais de Computação , Estados Unidos
2.
Sci Rep ; 6: 27930, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27297683

RESUMO

The emergence and spread of antimicrobial resistance (AMR) mechanisms in bacterial pathogens, coupled with the dwindling number of effective antibiotics, has created a global health crisis. Being able to identify the genetic mechanisms of AMR and predict the resistance phenotypes of bacterial pathogens prior to culturing could inform clinical decision-making and improve reaction time. At PATRIC (http://patricbrc.org/), we have been collecting bacterial genomes with AMR metadata for several years. In order to advance phenotype prediction and the identification of genomic regions relating to AMR, we have updated the PATRIC FTP server to enable access to genomes that are binned by their AMR phenotypes, as well as metadata including minimum inhibitory concentrations. Using this infrastructure, we custom built AdaBoost (adaptive boosting) machine learning classifiers for identifying carbapenem resistance in Acinetobacter baumannii, methicillin resistance in Staphylococcus aureus, and beta-lactam and co-trimoxazole resistance in Streptococcus pneumoniae with accuracies ranging from 88-99%. We also did this for isoniazid, kanamycin, ofloxacin, rifampicin, and streptomycin resistance in Mycobacterium tuberculosis, achieving accuracies ranging from 71-88%. This set of classifiers has been used to provide an initial framework for species-specific AMR phenotype and genomic feature prediction in the RAST and PATRIC annotation services.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos/genética , Genoma Bacteriano/genética , Tomada de Decisão Clínica , Biologia Computacional , Curadoria de Dados , Humanos , Aprendizado de Máquina , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , National Institutes of Health (U.S.) , Prognóstico , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA