Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 9: 135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456535

RESUMO

The generation of CD138+ phagocytic macrophages with an alternative (M2) phenotype that clear apoptotic cells from tissues is defective in lupus. Liver X receptor-alpha (LXRα) is an oxysterol-regulated transcription factor that promotes reverse cholesterol transport and alternative (M2) macrophage activation. Conversely, hypoxia-inducible factor 1-α (HIF1α) promotes classical (M1) macrophage activation. The objective of this study was to see if lupus can be treated by enhancing the generation of M2-like macrophages using LXR agonists. Peritoneal macrophages from pristane-treated mice had an M1 phenotype, high HIFα-regulated phosphofructokinase and TNFα expression (quantitative PCR, flow cytometry), and low expression of the LXRα-regulated gene ATP binding cassette subfamily A member 1 (Abca1) and Il10 vs. mice treated with mineral oil, a control inflammatory oil that does not cause lupus. Glycolytic metabolism (extracellular flux assays) and Hif1a expression were higher in pristane-treated mice (M1-like) whereas oxidative metabolism and LXRα expression were higher in mineral oil-treated mice (M2-like). Similarly, lupus patients' monocytes exhibited low LXRα/ABCA1 and high HIF1α vs. CONTROLS: The LXR agonist T0901317 inhibited type I interferon and increased ABCA1 in lupus patients' monocytes and in murine peritoneal macrophages. In vivo, T0901317 induced M2-like macrophage polarization and protected mice from diffuse alveolar hemorrhage (DAH), an often fatal complication of lupus. We conclude that end-organ damage (DAH) in murine lupus can be prevented using an LXR agonist to correct a macrophage differentiation abnormality characteristic of lupus. LXR agonists also decrease inflammatory cytokine production by human lupus monocytes, suggesting that these agents may be have a role in the pharmacotherapy of lupus.


Assuntos
Hidrocarbonetos Fluorados/farmacologia , Receptores X do Fígado/agonistas , Macrófagos Peritoneais/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hemorragia/prevenção & controle , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Macrófagos Peritoneais/patologia , Macrófagos Peritoneais/fisiologia , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Terpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-26342162

RESUMO

To explore the brain-targeting of cyclovirobuxine D(CVB-D) after administered intranasally, the pharmacokinetics of CVB-D via three different drug delivery routes: intragastric (i.g.), intranasal (i.n.), and intravenous (i.v.) in rat brain and blood was compared. Firstly, an in vivo microdialysis method for sampling CVB-D in both plasma and brain of the rat was established. Secondly, a liquid chromatography-tandem mass spectrometry method has been developed and validated for determination of CVB-D in microdialysis samples. For plasma and brain microdialysis samples, liquid-liquid extraction was used and donepezil was chosen as internal standard. Both were followed by HPLC separation and positive electrospray ionization tandem mass spectrometry detection (ESI-MS/MS). Chromatographic separation was achieved on a agilent C18 column with a mobile phase of methanol-water (50:50, v/v) (pH 3.2) containing 0.1% formic acid and 5mM ammonium acetate. Mass spectrometric detection in the positive ion mode was carried out by selected reaction monitoring (MRM) of the transitions at m/z 403.4→372.3 for CVB-D and m/z 380.2→243.1 for donepezil (IS). Good linearities were obtained in the range of 10-4000ng/mL in rat microdialysates for CVB-D. The lowest limit of quantitation was 5ng/mL, with an extraction recovery >75%, and no significant matrix effects. Intra- and inter-day precisions were all <15% with accuracies of 97.26-116.20%. All of which proved that the established method was successfully applied to the pharmacokinetic study of CVB-D. Simultaneously, brain uptake and pharmacokinetic studies were performed by determination of CVB-D concentration in blood and brain respectively for CVB-D i.g., i.n. and i.v.. Results showed that the intranasal CVB-D could improve brain targeting and had advantages for direct nose to brain transport of CVB-D when compared with injection and oral delivery routes, which indicates that intranasal administration of CVB-D could be a promising approach for the treatment of cerebrovascular disease.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Sangue , Vias de Administração de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Limite de Detecção , Masculino , Microdiálise , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA