Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 368: 110230, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309138

RESUMO

Diabetes mellitus has become a serious problem associated with health complications, such as metabolism disorders and liver-kidney dysfunction. The inadequacies associated with conventional medicines have led to a determined search for alternative natural therapeutic agents. The present study was conducted to evaluate the hypoglycemic, antilipidemic, and antioxidant effects of EGCG in surviving diabetic mice. Alloxan diabetic mice were treated with EGCG. Their bloods were collected and submitted to various biochemical measurements, including blood glucose, cholesterol, triglycerides, urea, creatinine, and transaminases. Their livers and kidneys were isolated to assess oxidative damage and to perform histological analysis. Both EGCG and insulin treatment of diabetic mice resulted in a significant reduction in fasting blood glucose levels. EGCG supplementation also ameliorated hepatic as well as renal toxicity indices. Moreover, diabetic mice injected with EGCG exhibited significant changes in antioxidant enzyme activities in the liver and kidney. Histological analyses also showed that it exerted an ameliorative action on these organs and efficiently protected the liver-kidney functions of diabetic mice. EGCG was found to bind α-amylase, PTP1B, and α-glucosidase with good affinities ranging from -6.1 to -8.4 kcal/mol. The findings revealed that EGCG administration induced attractive curative effects on diabetic mice, particularly in terms of liver-kidney function. EGCG can, therefore, be considered as a potential strong candidate for future applications to treat and alleviate diabetic burden. Its pharmacokinetics, high affinities, and molecular interactions with the targeted receptors satisfactory explain the in vivo findings.


Assuntos
Catequina , Diabetes Mellitus Experimental , Hiperglicemia , Hiperlipidemias , Animais , Camundongos , Aloxano/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Glicemia/metabolismo , Hiperlipidemias/tratamento farmacológico , Catequina/farmacologia , Catequina/uso terapêutico , Estresse Oxidativo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fígado , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo
2.
3 Biotech ; 12(9): 191, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35910291

RESUMO

In the present study we focused on the anti-asthmatic and antioxidant effects of Zingiber officinalis roscoe L. (ZO) aqueous extract. This study includes 20 adult male rats, which were grouped into four; Group I: control group; Group II: asthmatic group (Ovalbumin sensitized/challenge model, Oval group); Group III: received ovalbumin sensitized/challenge associated a dose of 207 mg/kg body weight (BW) of ZO (Oval + D1 group); Group IV: received ovalbumin sensitized/challenge associated a dose of 414 mg/k BW of ZO (Oval + D2 group). After 21 days, blood and lung samples were collected for biochemical, hematological, and histopathological analyses. The ameliorative effect of ZO phytochemical compounds was also assessed by in silico approach on transducer and activator of transcription 6 (STAT6) and tumor necrosis factor-α (TNF-α) receptors. The oxidative/antioxidative status was evaluated in the lung tissues. Our results show that ZO extract alleviated the ovalbumin-induced hematological and biochemical disruptions associated oxidative injury. In fact, white and red blood cells (WBC and RBC, respectively), aspartate aminotransaminase (ASAT), malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GPx) were significantly disrupted (p < 0.05) in Oval group and alleviated following ZO treatment. Besides, several histopathological features were outlined in lung tissues of Oval group. Interestingly, ZO was found to exert ameliorative effects on tissue level. In silico analyses, particularly the binding affinities, the number of H-bonds, the embedding distance and the molecular interactions of ZO phytochemical compounds with either STAT6 or TNF-α supported the in vivo results. These findings confirm the potential ethno-pharmacological effects of ZO against asthma and its associated complications.

3.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35215242

RESUMO

Fighting against the emergent coronavirus disease (COVID-19) remains a big challenge at the front of the world communities. Recent research has outlined the potential of various medicinal herbs to counteract the infection. This study aimed to evaluate the interaction of artemisinin, a sesquiterpene lactone extracted from the Artemisia genus, and its derivatives with the SARS-CoV-2 main protease. To assess their potential use against COVID-19, the interactions of the main active principle of Artemisia with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) was investigated through in silico probing. Our results showed that artemesinin and its derivatives manifested good oral absorption and bioavailability scores (0.55). They potently bound to the Mpro site of action-specifically, to its Cys145 residue. The selected compounds established two to three conventional hydrogen bonds with binding affinities ranging between -5.2 and -8.1 kcal/mol. Furthermore, artemisinin interactions with angiotensin converting enzyme 2 (ACE2) were dependent on the ACE2 allelic variants. The best score was recorded with rs961360700. A molecular dynamic simulation showed sufficient stability of the artemisinin-Mpro complex on the trajectory of 100 ns simulation frame. These binding interactions, together with drug-likeness and pharmacokinetic findings, confirmed that artemisinin might inhibit Mpro activity and explain the ethnopharmacological use of the herb and its possible antiviral activity against SARS-CoV-2 infection inducing COVID-19. Nevertheless, it interacted differently with the various ACE2 allelic variants reported to bind with the SARS-CoV-2 spike protein.

4.
Calcif Tissue Int ; 110(4): 475-488, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34988595

RESUMO

Breast cancer bone metastases (BCBM) result in serious skeletal morbidity. Although there have been important advances in cancer treatment methods such as surgery and chemotherapy, the complementary treatments, such as α-tocopherol acetate (ATA), still remain of key role via complementary and/or synergistic effects. The aim of this work was to study immune response in a rat model of BCBM due to Walker 256/B cells inoculation and the effect of ATA alone. Compared to the control group (CTRL), rat injected with Walker 256/B cells (5 × 104) in the medullar cavity (W256 group) showed osteolytic damages with marked tumor osteolysis of both cancellous and trabecular bone as assessed by X-ray radiology, micro-computed tomography, and histology. Rats inoculated with Walker 256/B cells and treated with ATA (45 mg/kg BW, W256ATA group) presented marked less tumor osteolysis, less disturbance of Tb.Th and Tb.Sp associated with conversion of rods into plates, and increased structure model index and trabecular pattern factor (Tb.Pf). Elsewhere, 3D frequency distributions of Tb.Th and Tb.Sp were highly disturbed in metastatic W256 rats. Overexpression of some genes commonly associated with cancer and metastatic proliferation: COX-2, TNF-α, and pro-inflammatory interleukins 1 and 6 was outlined. ATA alleviated most of the Walker 256/B cells-induced microarchitectural changes in the target parameters without turning back to normal levels. Likewise, it alleviates the BCSM-induced overexpression of COX-2, TNF-α, IL-1, and IL-6. In silico approach showed that ATA bound these proteins with high affinities, which satisfactory explain its beneficial effects. In conclusion, BCBM is associated with bone microarchitectural disorders and an immune response characterized by an overexpression of some key role genes in cancer proliferation and invasion. ATA exerted favorable effects on trabecular bone distribution and morphology, which may involve the COX-2, TNF-α, and ILs pathways.


Assuntos
Neoplasias da Mama , Osteólise , alfa-Tocoferol , Animais , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Ciclo-Oxigenase 2 , Suplementos Nutricionais , Osteólise/tratamento farmacológico , Osteólise/patologia , Ratos , Fator de Necrose Tumoral alfa , Microtomografia por Raio-X , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA