Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chromatogr A ; 1503: 21-31, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487120

RESUMO

In the present work we propose new variants of chiral stationary phases (CSP) with tert-butylcarbamoylquinine (tBuCQN) as chiral selector molecule. Four tBuCQN-CSPs with distinct bonding chemistries are compared in terms of their pH-dependent surface charge by ζ-potential determinations, by achiral and chiral liquid chromatographic tests and LC-ESI-MS hyphenation. In one embodiment tBuCQN was immobilized on 3-mercaptopropylmethylsilyl-modified silica by thiol-ene click reaction (brush type CSP with selector coverage of 0.38mmol/g). In another embodiment, poly-(3-mercaptopropyl)-methylsiloxane was coated onto vinylized silica particles in presence of tBuCQN and radical initiator. The tBuCQN selector was then immobilized onto the polysiloxane film which in turn was crosslinked to the vinyl-surface in a simultaneous double click reaction leading to a CSP with enhanced stability due to multiple linkages (0.29mmol/g tBuCQN). Aliquots of each of the two CSPs were further modified by oxidation of free residual thiol groups to sulfonic acid functionalities to obtain strongly acidic endcapping groups which act as immobilized counterions of the chiral WAX CSPs (0.2mmol/g sulfonic acid co-ligands for brush type CSP). This caused secondary repulsive interactions, hence balanced interactions of the target analytes (chiral acids) at the WAX site and decreased non-specific interactions. Furthermore, this rendered possible the use of milder elution conditions, i.e. lower ionic strength, for acidic compounds. Separation performance was maintained and slightly improved, respectively, when using polar organic or reversed-phase type elution mode in chiral separations which were significantly accelerated (isoeluotropic conditions could be achieved with ca. factor 40 lower counterion concentration in the mobile phase). Thus, LC-ESI-MS enantiomer separations could be readily performed at very low ionic strength conditions (10mM acetate) which is favorable due to less ion suppression. In addition to this the newly developed stationary phases showed complementary retention profiles in RP- and HILIC-mode which make these type of stationary phases also promising tools for achiral applications in pharmaceutical analysis, especially as orthogonal separation principle e.g. in 2D-LC and impurity profiling.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas , Ânions/química , Íons/química , Concentração Osmolar , Quinina/análogos & derivados , Quinina/química , Dióxido de Silício/química , Siloxanas/química , Estereoisomerismo , Compostos de Sulfidrila/química
2.
J Pharm Biomed Anal ; 118: 195-205, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26562182

RESUMO

Pentacyclic triterpene mono- and diesters have been isolated from Calendula officinalis flowers. GC-MS, APCI-Exactive Orbitrap HR-MS and NMR allowed to identify the triterpene skeleton in various samples (different triterpene mixtures from Calendula n-hexane extract). NMR provided evidence that triterpene diesters are present in the samples as well. However, the corresponding quasi-molecular ions could not be detected by APCI-Exactive Orbitrap HR-MS. Instability of triterpene diesters and loss of a fatty acid residue, respectively, in the ion-source made their MS detection challenging. Thus, a set of new APCI-QTOF-MS methods (using the TripleTOF 5600+ mass spectrometer) were developed which made it eventually possible to solve this problem and confirm the diester structures by MS via quasi-molecular ion [M+H](+) detection. Direct infusion APCI-QTOF MS experiments in MS/MS high sensitivity scan mode with low collision energy and multi-channel averaging acquisition (MCA) allowed the detection of quasi-molecular ions of triterpene diesters for the first time and unequivocally confirmed the presence of faradiol 3,16-dimyristate and -dipalmitate, as well as the corresponding mixed diesters faradiol 3-myristate,16-palmitate and faradiol 3-palmitate,16-myristate. Preferential loss of the fatty acid in 16-position made it possible to distinguish the mixed diesters by MS/MS spectra. Their chromatographic separations turned out to be challenging due to their bulkiness and extended molecular dimensions. However, separation could be achieved by an uncommon non-aqueous RPLC mode with an in-house synthesized C30 phase. Finally, two (U)HPLC-APCI-QTOF-MS methods with C18- and C30-based non-aqueous RPLC provided suitable, sensitive assays to monitor the presence of monoesters and diesters of various triterpenes (faradiol, maniladiol, arnidiol, arnitriol A and lupane-3ß,16ß,20-triol esters) in the n-hexane extract of C. officinalis with high mass resolution and good mass accuracy.


Assuntos
Calendula , Flores , Triterpenos Pentacíclicos/análise , Extratos Vegetais/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Triterpenos Pentacíclicos/química , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA