Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33651718

RESUMO

BACKGROUNDPatients with p16+ oropharyngeal squamous cell carcinoma (OPSCC) are potentially cured with definitive treatment. However, there are currently no reliable biomarkers of treatment failure for p16+ OPSCC. Pathologist-based visual assessment of tumor cell multinucleation (MN) has been shown to be independently prognostic of disease-free survival (DFS) in p16+ OPSCC. However, its quantification is time intensive, subjective, and at risk of interobserver variability.METHODSWe present a deep-learning-based metric, the multinucleation index (MuNI), for prognostication in p16+ OPSCC. This approach quantifies tumor MN from digitally scanned H&E-stained slides. Representative H&E-stained whole-slide images from 1094 patients with previously untreated p16+ OPSCC were acquired from 6 institutions for optimization and validation of the MuNI.RESULTSThe MuNI was prognostic for DFS, overall survival (OS), or distant metastasis-free survival (DMFS) in p16+ OPSCC, with HRs of 1.78 (95% CI: 1.37-2.30), 1.94 (1.44-2.60), and 1.88 (1.43-2.47), respectively, independent of age, smoking status, treatment type, or tumor and lymph node (T/N) categories in multivariable analyses. The MuNI was also prognostic for DFS, OS, and DMFS in patients with stage I and stage III OPSCC, separately.CONCLUSIONMuNI holds promise as a low-cost, tissue-nondestructive, H&E stain-based digital biomarker test for counseling, treatment, and surveillance of patients with p16+ OPSCC. These data support further confirmation of the MuNI in prospective trials.FUNDINGNational Cancer Institute (NCI), NIH; National Institute for Biomedical Imaging and Bioengineering, NIH; National Center for Research Resources, NIH; VA Merit Review Award from the US Department of VA Biomedical Laboratory Research and Development Service; US Department of Defense (DOD) Breast Cancer Research Program Breakthrough Level 1 Award; DOD Prostate Cancer Idea Development Award; DOD Lung Cancer Investigator-Initiated Translational Research Award; DOD Peer-Reviewed Cancer Research Program; Ohio Third Frontier Technology Validation Fund; Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering; Clinical and Translational Science Award (CTSA) program, Case Western Reserve University; NCI Cancer Center Support Grant, NIH; Career Development Award from the US Department of VA Clinical Sciences Research and Development Program; Dan L. Duncan Comprehensive Cancer Center Support Grant, NIH; and Computational Genomic Epidemiology of Cancer Program, Case Comprehensive Cancer Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, the US Department of VA, the DOD, or the US Government.


Assuntos
Biomarcadores Tumorais/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Processamento de Imagem Assistida por Computador , Carcinoma de Células Escamosas de Cabeça e Pescoço , Idoso , Intervalo Livre de Doença , Feminino , Seguimentos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Taxa de Sobrevida
2.
Sci Rep ; 8(1): 3474, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472563

RESUMO

Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias Mamárias Experimentais/radioterapia , Terapia por Radiofrequência , Linfócitos T/efeitos da radiação , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos da radiação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos da radiação , Citocinas/sangue , Feminino , Humanos , Hipertermia Induzida , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA