Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Revista
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685139

RESUMO

The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.

2.
Foods ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37509778

RESUMO

This study characterises the effect of a customised starter culture (CSC) and plant extracts (lemon balm, sage, and spearmint) on Staphylococcus aureus (SA) and lactic acid bacteria (LAB) kinetics in goat's raw milk soft cheeses. Raw milk cheeses were produced with and without the CSC and plant extracts, and analysed for pH, SA, and LAB counts throughout ripening. The pH change over maturation was described by an empirical decay function. To assess the effect of each bio-preservative on SA, dynamic Bigelow-type models were adjusted, while their effect on LAB was evaluated by classical Huang models and dynamic Huang-Cardinal models. The models showed that the bio-preservatives decreased the time necessary for a one-log reduction but generally affected the cheese pH drop and SA decay rates (logDref = 0.621-1.190 days; controls: 0.796-0.996 days). Spearmint and sage extracts affected the LAB specific growth rate (0.503 and 1.749 ln CFU/g day-1; corresponding controls: 1.421 and 0.806 ln CFU/g day-1), while lemon balm showed no impact (p > 0.05). The Huang-Cardinal models uncovered different optimum specific growth rates of indigenous LAB (1.560-1.705 ln CFU/g day-1) and LAB of cheeses with CSC (0.979-1.198 ln CFU/g day-1). The models produced validate the potential of the tested bio-preservatives to reduce SA, while identifying the impact of such strategies on the fermentation process.

3.
Foods ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900464

RESUMO

Plants are rich in bioactive phytochemicals that often display medicinal properties. These can play an important role in the production of health-promoting food additives and the replacement of artificial ones. In this sense, this study aimed to characterise the polyphenolic profile and bioactive properties of the decoctions, infusions and hydroethanolic extracts of three plants: lemon balm (Melissa officinalis L.), sage (Salvia officinalis L.) and spearmint (Mentha spicata L.). Total phenolic content ranged from 38.79 mg/g extract to 84.51 mg/g extract, depending on the extract. The main phenolic compound detected in all cases was rosmarinic acid. The results highlighted that some of these extracts may have the ability to prevent food spoilage (due to antibacterial and antifungal effects) and promote health benefits (due to anti-inflammatory and antioxidant capacities) while not displaying toxicity against healthy cells. Furthermore, although no anti-inflammatory capacity was observed from sage extracts, these stood out for often displaying the best outcomes in terms of other bioactivities. Overall, the results of our research provide insight into the potential of plant extracts as a source of active phytochemicals and as natural food additives. They also support the current trends in the food industry of replacing synthetic additives and developing foods with added beneficial health effects beyond basic nutrition.

4.
Foods ; 10(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809865

RESUMO

Plant extracts have been proposed as alternative biocides and antioxidants to be included in a variety of food products. In this work, to assess the potential of rosemary, lemon balm, basil, tarragon, sage, and spearmint to be used as food additives, the chemical profiles and bioactivities of such plant extracts were studied. Furthermore, to evaluate the influence of extraction methods and solvents on the chemical characteristics and bioactivities of the plant extracts, two extraction methods (solid-liquid and Soxhlet extraction) and two solvents (water and ethanol 70% (v/v)) were tested for each plant. Groupwise summary statistics were calculated by plant, extraction method, and solvent, and linear models were built to assess the main effects of those terms and their interactions on the chemical characteristics and bioactivities of the extracts. The results revealed that all factors-type of plant, extraction method and solvent-have influence on the chemical profile and antioxidant activity of the resultant extracts. Interactions between factors were also observed. Hydroethanolic Soxhlet extracts presented the least potential as biopreservatives due to their low phenolic content and reduced antioxidant capacity. Oppositely, aqueous Soxhlet extracts and hydroethanolic solid-liquid extracts showed high contents in phenolic compounds and high antioxidant activities. In particular, the hydroethanolic solid-liquid extracts of lemon balm, spearmint, and sage presented the highest phenolic and flavonoid contents, accompanied by a high antioxidant activity, and they revealed antimicrobial activity against four pathogens (S. enterica ser. Typhimurium, E. coli, L. monocytogenes and S. aureus). These results demonstrate the potential of these natural resources to be incorporated as bioactive preservatives in foods or their packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA