Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Plant Sci ; 28(5): 501-504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925356

RESUMO

When we think about coffee, exotic tropical countries such as Colombia, Brazil, and Ethiopia first come to mind. However, the crucial contribution of Portugal and its scientists to each cup of coffee we drink remains either poorly known or overlooked.


Assuntos
Café , Brasil , Colômbia , Etiópia , Café/história , Portugal
3.
PLoS One ; 12(5): e0178159, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542545

RESUMO

Understanding the molecular mechanisms underlying coffee-pathogen interactions are of key importance to aid disease resistance breeding efforts. In this work the expression of genes involved in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) pathways were studied in hypocotyls of two coffee varieties challenged with the hemibiotrophic fungus Colletotrichum kahawae, the causal agent of Coffee Berry Disease. Based on a cytological analysis, key time-points of the infection process were selected and qPCR was used to evaluate the expression of phytohormones biosynthesis, reception and responsive-related genes. The resistance to C. kahawae was characterized by restricted fungal growth associated with early accumulation of phenolic compounds in the cell walls and cytoplasmic contents, and deployment of hypersensitive reaction. Similar responses were detected in the susceptible variety, but in a significantly lower percentage of infection sites and with no apparent effect on disease development. Gene expression analysis suggests a more relevant involvement of JA and ET phytohormones than SA in this pathosystem. An earlier and stronger activation of the JA pathway observed in the resistant variety, when compared with the susceptible one, seems to be responsible for the successful activation of defense responses and inhibition of fungal growth. For the ET pathway, the down or non-regulation of ET receptors in the resistant variety, together with a moderate expression of the responsive-related gene ERF1, indicates that this phytohormone may be related with other functions besides the resistance response. However, in the susceptible variety, the stronger activation of ERF1 gene at the beginning of the necrotrophic phase, suggests the involvement of ET in tissue senescence. As far as we know, this is the first attempt to unveil the role of phytohormones in coffee-C. kahawae interactions, thus contributing to deepen our understanding on the complex mechanisms of plant signaling and defense.


Assuntos
Café/genética , Café/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/genética , Café/metabolismo , Colletotrichum/fisiologia , Resistência à Doença , Humanos , Hipocótilo/genética , Hipocótilo/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA