Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978907

RESUMO

Sepsis syndrome develops through enhanced secretion of pro-inflammatory cytokines and the generation of reactive oxygen species (ROS). Sepsis syndrome is characterized by vascular hyperpermeability, hypotension, multiple organ dysfunction syndrome (MODS), and increased mortality, among others. Endotoxemia-derived sepsis is an important cause of sepsis syndrome. During endotoxemia, circulating endotoxin interacts with endothelial cells (ECs), inducing detrimental effects on endothelium function. The endotoxin induces the conversion of ECs into fibroblasts, which are characterized by a massive change in the endothelial gene-expression pattern. This downregulates the endothelial markers and upregulates fibrotic proteins, mesenchymal transcription factors, and extracellular matrix proteins, producing endothelial fibrosis. Sepsis progression is modulated by the consumption of specific nutrients, including ω-3 fatty acids, ascorbic acid, and polyphenolic antioxidant flavonoids. However, the underlying mechanism is poorly described. The notion that gene expression is modulated during inflammatory conditions by nutrient consumption has been reported. However, it is not known whether nutrient consumption modulates the fibrotic endothelial gene-expression pattern during sepsis as a mechanism to decrease vascular hyperpermeability, hypotension, MODS, and mortality. Therefore, the aim of this study was to investigate the impact of the consumption of dietary ω-3 fatty acids, ascorbic acid, and polyphenolic antioxidant flavonoid supplements on the modulation of fibrotic endothelial gene-expression patterns during sepsis and to determine the effects on sepsis outcomes. Our results indicate that the consumption of supplements based on ω-3 fatty acids and polyphenolic antioxidant flavonoids was effective for improving endotoxemia outcomes through prophylactic ingestion and therapeutic usage. Thus, our findings indicated that specific nutrient consumption improves sepsis outcomes and should be considered in treatment.

2.
Front Pharmacol ; 13: 1003264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160442

RESUMO

Background: There is abundant ethnopharmacological evidence the uses of regarding Solanum species as antitumor and anticancer agents. Glycoalkaloids are among the molecules with antiproliferative activity reported in these species. Purpose: To evaluate the anticancer effect of the Solanum glycoalkaloid tomatine in hepatocellular carcinoma (HCC) in vitro (HepG2 cells) and in vivo models. Methods: The resazurin reduction assay was performed to detect the effect of tomatine on cell viability in human HepG2 cell lines. Programmed cell death was investigated by means of cellular apoptosis assays using Annexin V. The expression of cancer related proteins was detected by Western blotting (WB). Reactive oxygen species (ROS) and calcium were determined by 2,7-dichlorodihydrofluorescein diacetate and Fluo-4, respectively. Intrahepatic HepG2 xenograft mouse model was used to elucidate the effect of tomatine on tumor growth in vivo. Results and Discussion: Tomatine reduced HepG2 cell viability and induced the early apoptosis phase of cell death, consistently with caspase-3, -7, Bcl-2 family, and P53 proteins activation. Furthermore, tomatine increased intracellular ROS and cytosolic Ca+2 levels. Moreover, the NSG mouse xenograft model showed that treating mice with tomatine inhibited HepG2 tumor growth. Conclusion: Tomatine inhibits in vitro and in vivo HCC tumorigenesis in part via modulation of p53, Ca+2, and ROS signalling. Thus, the results suggest the potential cancer therapeutic use of tomatine in HCC patients.

3.
Curr Mol Med ; 20(1): 60-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31530262

RESUMO

BACKGROUND: Sarcopenia is characterized by the loss of muscle mass and strength (muscle atrophy) because of aging or chronic diseases, such as chronic liver disease (CLD). Different mechanisms are involved in skeletal muscle atrophy, including decreased muscle fibre diameter and myosin heavy chain levels and increased ubiquitin-proteasome pathway activity, oxidative stress and myonuclear apoptosis. We recently found that all these mechanisms, except myonuclear apoptosis, which was not evaluated in the previous study, were involved in muscle atrophy associated with hepatotoxin 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced CLD. OBJECTIVE: In the present study, we evaluated the involvement of myonuclear apoptosis in CLD-associated sarcopenia and the effect of N-acetyl cysteine (NAC) treatment on muscle strength and apoptosis, using a DDC-supplemented diet-fed mouse model. METHODS: Four-month-old male C57BL6 mice were fed with a standard or DDCsupplemented diet for six weeks in the absence or presence of NAC treatment. RESULTS: Our results showed that NAC attenuated the decrease in muscle fibre diameter and muscle strength associated with CLD-induced muscle wasting in gastrocnemius (GA) muscle of DDC-supplemented diet-fed mice. In addition, in GA muscle of the mice fed with DDC-supplemented diet-induced CLD showed increased myonuclear apoptosis compared with the GA muscle of the control diet-fed mice, as evidenced by increased apoptotic nuclei number, caspase-8 and caspase-9 expression, enzymatic activity of caspase-3 and BAX/BCL-2 ratio. NAC treatment inhibited all the mechanisms associated with myonuclear apoptosis in the GA muscle. CONCLUSION: To our knowledge, this is the first study which reports the redox regulation of muscle strength and myonuclear apoptosis in CLD-induced sarcopenia.


Assuntos
Acetilcisteína/farmacologia , Doença Hepática Terminal/tratamento farmacológico , Atrofia Muscular/tratamento farmacológico , Sarcopenia/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Doença Hepática Terminal/induzido quimicamente , Doença Hepática Terminal/complicações , Doença Hepática Terminal/patologia , Humanos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo/efeitos dos fármacos , Piridinas/toxicidade , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/patologia
4.
Phytomedicine ; 22(10): 885-93, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26321737

RESUMO

BACKGROUND: Pure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-ß1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-ß involves the Smad pathway. PURPOSE: To evaluate the effect of TGF-ß and the effect of apocynin on TGF-ß1 expression in skeletal muscle cells. STUDY DESIGN: Controlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-ß1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-ß-receptor I inhibitor), or chelerythrine (PKC inhibitor). METHODS: TGF-ß1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements. RESULTS: We show that myoblasts respond to TGF-ß1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-ß1 also induced ROS. Remarkably, apocynin inhibited the TGF-ß1 induced ROS as well as the autoinduction of TGF-ß1 gene expression. We also show that TGF-ß-induced ROS production and TGF-ß1 expression require PKC activity as indicated by the inhibition using chelerythrine. CONCLUSION: These results strongly suggest that TGF-ß induces its own expression through a TGF-ß-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.


Assuntos
Acetofenonas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Benzofenantridinas/farmacologia , Linhagem Celular , Imidazóis/farmacologia , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteína Quinase C/metabolismo , Quinoxalinas/farmacologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Regulação para Cima
5.
PLoS One ; 10(4): e0123335, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915043

RESUMO

Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5-2.2 µm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry.


Assuntos
Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Ácido Láctico/química , Ácido Poliglicólico/química , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Cápsulas/química , Cefalosporinas/administração & dosagem , Cefalosporinas/efeitos adversos , Cefalosporinas/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Infecções por Salmonella/tratamento farmacológico
6.
J Cell Physiol ; 229(5): 607-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24446197

RESUMO

Copper is an essential cofactor of complex IV of the electron transfer chain, and it is directly involved in the generation of mitochondrial membrane potential. Its deficiency induces the formation of ROS, large mitochondria and anemia. Thus, there is a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis. Copper depletion might end in cellular apoptosis or necrosis. However, before entering into those irreversible processes, mitochondria may execute a series of adaptive responses. Mitochondrial adaptive responses (MAR) may involve multiple and diverse mechanisms for preserving cell life, such as mitochondrial dynamics, OXPHOS remodeling and bioenergetics output. In this study, a mild copper deficiency was produced in an animal model through intraperitoneal injections of bathocuproine disulfonate in order to study the MAR. Under these conditions, a new type of mitochondrial morphology was discovered in the liver. Termed the "butternut squash" mitochondria, it coexisted with normal and swollen mitochondria. Western blot analyses of mitochondrial dynamics proteins showed an up-regulation of MFN-2 and OPA1 fusion proteins. Furthermore, isolated liver mitochondria displayed OXPHOS remodeling through a decrease in supercomplex activity with a concomitant increase at an individual level of complexes I and IV, higher respiratory rates at complex I and II levels, higher oligomycin-insensitive respiration, and lower respiratory control ratio values when compared to the control group. As expected, total ATP and ATP/ADP values were not significantly different, since animal's health was not compromised. As a whole, these results describe a compensatory and adaptive response of metabolism and bioenergetics under copper deprivation.


Assuntos
Adaptação Fisiológica/fisiologia , Cobre/deficiência , Metabolismo Energético/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Quelantes/farmacologia , Cobre/metabolismo , Masculino , Camundongos , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA