Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Microb Cell Fact ; 22(1): 226, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925404

RESUMO

Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.


Assuntos
Endófitos , Plantas Medicinais , Humanos , Endófitos/metabolismo , Ecossistema , Fungos/metabolismo , Biodiversidade
2.
Food Chem ; 424: 136368, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37210846

RESUMO

Potatoes are consumed worldwide because of their high accessibility, low cost, taste, and diversity of cooking methods. The high carbohydrate content of potatoes masks the presence of -vitamins, polyphenols, minerals, amino acids, lectins and protein inhibitors in the minds of consumers. The consumption of potatoes faces challenges among health-conscious people. This review paper attempted to provide up-to-date information on new metabolites reported in potatoes that play role in disease prevention and overall human well-being. We tried to compile information on antidiabetic, antihypertensive, anticancer, antiobesity, antihyperlipidemic, and anti-inflammatory potential of potato along with role in improving gut health and satiety. In-vitro studies, human cell culture, and experimental animal and human clinical studies showed potatoes to exhibit a variety of health-enhancing properties. This article will not only popularize potato as a healthy food, but will also improve its use as a staple for the foreseeable future.


Assuntos
Solanum tuberosum , Animais , Humanos , Solanum tuberosum/química , Vitaminas/metabolismo , Polifenóis/análise , Anti-Hipertensivos/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768834

RESUMO

Potatoes are developed vegetatively from tubers, and therefore potato virus transmission is always a possibility. The potato leafroll virus (PLRV) is a highly devastating virus of the genus Polerovirus and family Luteoviridae and is regarded as the second-most destructive virus after Potato virus Y. Multiple species of aphids are responsible for the persistent and non-propagating transmission of PLRV. Due to intrinsic tuber damage (net necrosis), the yield and quality are drastically diminished. PLRV is mostly found in phloem cells and in extremely low amounts. Therefore, we have attempted to detect PLRV in both potato tuber and leaves using a highly sensitive, reliable and cheap method of one-step reverse transcription-recombinase polymerase amplification (RT-RPA). In this study, an isothermal amplification and detection approach was used for efficient results. Out of the three tested primer sets, one efficiently amplified a 153-bp product based on the coat protein gene. In the present study, there was no cross-reactivity with other potato viruses and the optimal amplification reaction time was thirty minutes. The products of RT-RPA were amplified at a temperature between 38 and 42 °C using a simple heating block/water bath. The present developed protocol of one-step RT-RPA was reported to be highly sensitive for both leaves and tuber tissues equally in comparison to the conventional reverse transcription-polymerase chain reaction (RT-PCR) method. By using template RNA extracted employing a cellular disc paper-based extraction procedure, the method was not only simplified but it detected the virus as effectively as purified total RNA. The simplified one-step RT-RPA test was proven to be successful by detecting PLRV in 129 samples of various potato cultivars (each consisting of leaves and tubers). According to our knowledge, this is the first report of a one-step RT-RPA performed using simple RNA extracted from cellular disc paper that is equally sensitive and specific for detecting PLRV in potatoes. In terms of versatility, durability and the freedom of a highly purified RNA template, the one-step RT-RPA assay exceeds the RT-PCR assay, making it an effective alternative for the certification of planting materials, breeding for virus resistance and disease monitoring.


Assuntos
Luteoviridae , Solanum tuberosum , Viroses , Transcrição Reversa , Recombinases/genética , Solanum tuberosum/genética , Melhoramento Vegetal , Luteoviridae/genética , RNA , Nucleotidiltransferases/genética
4.
Chemosphere ; 299: 134429, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35346739

RESUMO

Potato peel waste is one of the zero-value wastes with the potential of bioethanol production through the Waste to Energy (WtE) approach. The newly isolated, phenotypically characterized, and molecular identified high-altitude strain, B. amyloliquefaciens, shown promising starch hydrolysis (12.06 g/L reducing sugars) over acid hydrolysis and is capable of working at 30-50 °C and pH 6.0-8.0. The ethanol production by Acinetobacter sp. (a newly isolated, phenotypically characterized, molecular identified) has been modelled and optimized through the central composite design of response surface methodology by taking the fermentation variables as input variables and ethanol yield as the output variable. The ethanol production by Acinetobacter sp. showcased a non-linear relationship of fermentation variables with the ethanol yield (5.83 g/L) with a 99.11% desirability function (R2) and 97.50 adj. R2 values. Optimal fermentation variables of 38.8% substrate concentration, 7% inoculum, pH 5.45 have been utilized for bioethanol production in 55.27 h at 27 °C. Overall, the present study evaluated the efficiency of newly isolated, indigenous extremophilic microbes of The Himalayan region in sustainable bioethanol production from zero-value waste "Potato peel waste" through the WtE approach. Moreover, the present study introduces the promising, unexplored extremophilic microbial strains with the starch-hydrolyzing and fermentation capabilities to bioethanol biorefinery.


Assuntos
Acinetobacter , Biocombustíveis , Fermentação , Solanum tuberosum , Acinetobacter/metabolismo , Etanol , Hidrólise , Solanum tuberosum/química , Amido/metabolismo
5.
Int J Mol Sci ; 23(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269776

RESUMO

Malnutrition, unhealthy diets, and lifestyle changes have become major risk factors for non-communicable diseases while adversely impacting economic growth and sustainable development. Anthocyanins, a group of flavonoids that are rich in fruits and vegetables, contribute positively to human health. This review focuses on genetic variation harnessed through crossbreeding and biotechnology-led approaches for developing anthocyanins-rich fruit and vegetable crops. Significant progress has been made in identifying genes involved in anthocyanin biosynthesis in various crops. Thus, the use of genetics has led to the development and release of anthocyanin-rich potato and sweet potato cultivars in Europe and the USA. The purple potato 'Kufri Neelkanth' has been released for cultivation in northern India. In Europe, the anthocyanin-rich tomato cultivar 'Sun Black' developed via the introgression of Aft and atv genes has been released. The development of anthocyanin-rich food crops without any significant yield penalty has been due to the use of genetic engineering involving specific transcription factors or gene editing. Anthocyanin-rich food ingredients have the potential of being more nutritious than those devoid of anthocyanins. The inclusion of anthocyanins as a target characteristic in breeding programs can ensure the development of cultivars to meet the nutritional needs for human consumption in the developing world.


Assuntos
Ipomoea batatas , Solanum lycopersicum , Solanum tuberosum , Antocianinas/genética , Regulação da Expressão Gênica de Plantas , Humanos , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Solanum lycopersicum/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Solanum tuberosum/metabolismo , Verduras/genética , Verduras/metabolismo
6.
Food Chem ; 359: 129939, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957333

RESUMO

Tomato leaf curl New Delhi virus-potato (ToLCNDV-potato) causes potato apical leaf curl disease which severely affects nutritional parameters such as carbohydrate, protein, and starch biosynthesis thereby altering glycemic index (GI) and resistant starch (RS) of potato. ToLCNDV-potato virus was inoculated on potato cultivars (Kufri Pukhraj [susceptible]; Kufri Bahar [resistant]) and various quality parameters of potato tuber were studied. There was a significant (P < 0.01) reduction in starch, amylose and resistant starch contents in the infected tubers. However, carbohydrate and amylopectin increased significantly (P < 0.01) which contributes to increased starch digestibility reflected with high GI and glycemic load values. Besides, ToLCNDV-potato infection leads to a significant increase in reducing sugar, sucrose, amino acid and protein in potato tubers. This is a first-ever study that highlights the impact of biotic stress on GI, RS and nutritional quality parameters of potato which is a matter of concern for consumers.


Assuntos
Begomovirus/patogenicidade , Índice Glicêmico , Tubérculos/metabolismo , Amido Resistente/metabolismo , Solanum tuberosum/metabolismo , Metabolismo dos Carboidratos , Solanum tuberosum/virologia , Estresse Fisiológico
7.
Funct Integr Genomics ; 21(2): 215-229, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33611637

RESUMO

Temperature plays an important role in potato tuberization. The ideal night temperature for tuber formation is ~17 °C while temperature beyond 22 °C drastically reduces the tuber yield. Moreover, high temperature has several undesirable effects on the plant and tubers. Investigation of the genes involved in tuberization under heat stress can be helpful in the generation of heat-tolerant potato varieties. Five genes, including StSSH2 (succinic semialdehyde reductase isoform 2), StWTF (WRKY transcription factor), StUGT (UDP-glucosyltransferase), StBHP (Bel1 homeotic protein), and StFLTP (FLOWERING LOCUS T protein), involved in tuberization and heat stress in potato were investigated. The results of our microarray analysis suggested that these genes regulate and function as transcriptional factors, hormonal signaling, cellular homeostasis, and mobile tuberization signals under elevated temperature in contrasting KS (Kufri Surya) and KCM (Kufri Chandramukhi) potato cultivars. However, no detailed report is available which establishes functions of these genes in tuberization under heat stress. Thus, the present study was designed to validate the functions of these genes in tuber signaling and heat tolerance using virus-induced gene silencing (VIGS). Results indicated that VIGS transformed plants had a consequential reduction in StSSH2, StWTF, StUGT, StBHP, and StFLTP transcripts compared to the control plants. Phenotypic observations suggest an increase in plant senescence, reductions to both number and size of tubers, and a decrease in plant dry matter compared to the control plants. We also establish the potency of VIGS as a high-throughput technique for functional validation of genes.


Assuntos
Inativação Gênica , Resposta ao Choque Térmico/genética , Tubérculos/genética , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas/genética , Temperatura Alta , Proteínas de Plantas/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/virologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/virologia , Temperatura
8.
Sci Total Environ ; 758: 143711, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223162

RESUMO

The fungal community plays an important role in forest ecosystems via the provision of resources to plant nutrition and productivity. However, the ecology of the fungal network and its relationship with phosphorus (P) dynamics remain poorly understood in mixed forest plantations. Here, we analyzed the fungal community using the amplicon sequencing in plantations of pure Eucalyptus grandis, with (E + N) and without N fertilization (E), besides pure Acacia mangium (A), and in a consortium of E. grandis and A. mangium (E + A), at 27 and 39 months after planting. We analyzed chemical, physical and biochemical soil and litter attributes related to P cycling, and the fungal community structure to find out if mixed plantations can increase fungal connections and to identify their role in the P dynamics in the soil-litter system. Soil organic fraction (OF), phosphorus in OF, total-P and acid phosphatase activity were significantly higher in E + A and A treatments regardless of the sampling period. Total N and P, richness, and Shannon diversity of the fungi in the litter was significantly higher in the treatments E + A and A. The fungal community structure in litter differed between treatments and sampling periods, and E + A showed an intermediate structure between the two pure treatments (E) and (A). E + A correlated highly with P dynamics when evaluated by both Pearson and redundancy analyses, particularly in the litter layer. Co-occurrence networks of fungal taxa became simpler in pure E. grandis plantations, whereas mixed system (E + A) showed a more connected and complex network. Our findings provide novel evidence that mixed forest plantations promote positive responses in the fungal community connections, which are closely related to P availability in the system, prominently in the litter layer. This indicates that the litter layer represents a specific niche to improve nutrient cycling by fungi in mixed forest ecosystems.


Assuntos
Micobioma , Árvores , Ecossistema , Florestas , Nitrogênio , Fósforo , Solo , Microbiologia do Solo
9.
Pulm Pharmacol Ther ; 58: 101831, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31349003

RESUMO

PURPOSE: Various mechanisms, including oxidative stress, inflammation, and protease-antiprotease imbalance are proposed for the progressive decline in lung function in chronic obstructive pulmonary disease (COPD). Doxycycline, a broad spectrum tetracycline antibiotic, is reported to have non-antimicrobial matrix metalloproteinases (MMP) inhibitory action in various inflammatory conditions. The effect of doxycycline in COPD is hereby assessed in the present randomized prospective study. PATIENTS AND METHODS: The first group of COPD patients (n = 30; mild (n = 3), moderate (n = 6), severe (n = 7), very severe (n = 14) as per GOLD II & III criteria was prescribed the standard therapy, a combination of (i) short acting anti-muscarinic agent (SAMA) + short acting ß2 agonist (SABA) inhaled and (ii) corticosteroid inhaled (ICS) + long acting ß2 agonist (LABA) (iii) ICS + LABA + LAMA. Whereas doxycycline (100 mg), was used daily once or twice as per Body Mass Index (BMI), as an add-on to existing standard therapy for the second group of patients (n = 30; mild (n = 2), moderate (n = 7), severe (n = 8), very severe (n = 13). All recruited patients were followed-up after 3 months of treatment. Lung function index FEV1(%) predicted, FEV1/FVC (%), quality of life status including COPD Assessment Test (CAT), St. George's Respiratory Questionnaire (SGRQ) were assessed. Routine blood cell count also was performed. RESULTS: Biochemical analysis included estimation of oxidative stress markers, inflammatory cytokines and proteases in plasma of both the groups. Reduction in oxidative stress is evidenced by a significant decrease in Lipid hydro peroxides (LPO), total oxidative stress (TOS) and increase in glutathione peroxidase (GSH-PX), reduced glutathione (GSH) and total anti-oxidant capacity (TAO) nitrite and nitrate (NOx) along with peroxynitrate following 3 months of add-on doxycycline treatment. Reduced levels of cytokines such as interleukin IL-6, TNF-α, IL-8 were also observed. Multivariate analysis identified TNF-α major effective discriminant among pre and post doxycycline treated COPD patients. The expression of TNF-α was inversely correlated with FEV1/FVC (%) changes. The levels of MMP-2 and MMP-9/tissue inhibitors of metalloproteinases (TIMP)-1 ratio (MMP-9/ TIMP-1), also decreased significantly and the decline could be associated with TOS. A significant increase in bilirubin and reduced glutathione (GSH) level was noticed in standard therapy group. CONCLUSION: These data suggest that the improvement in lung function and quality of life in COPD patients may probably be attributed to the antioxidant, anti-inflammatory and anti-MMP activity of doxycycline. The potential therapeutic role of long-term doxycycline, in addition to its traditional antibiotic effect, definitely warrants further attention.


Assuntos
Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Administração por Inalação , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Progressão da Doença , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Peptídeo Hidrolases/sangue , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Estudos Prospectivos , Qualidade de Vida , Distribuição Aleatória
10.
Front Microbiol ; 9: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515526

RESUMO

Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP) compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats.

11.
Crit Rev Biotechnol ; 37(7): 942-957, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28095718

RESUMO

Tuberization in potato (Solanum tuberosum L.) is a complex biological phenomenon which is affected by several environmental cues, genetic factors and plant nutrition. Understanding the regulation of tuber induction is essential to devise strategies to improve tuber yield and quality. It is well established that short-day photoperiods promote tuberization, whereas long days and high-temperatures inhibit or delay tuberization. Worldwide research on this complex biological process has yielded information on the important bio-molecules (proteins, RNAs, plant growth regulators) associated with the tuberization process in potato. Key proteins involved in the regulation of tuberization include StSP6A, POTH1, StBEL5, StPHYB, StCONSTANS, Sucrose transporter StSUT4, StSP5G, etc. Biomolecules that become transported from "source to sink" have also been suggested to be important signaling candidates regulating the tuberization process in potatos. Four molecules, namely StSP6A protein, StBEL5 RNA, miR172 and GAs, have been found to be the main candidates acting as mobile signals for tuberization. These biomolecules can be manipulated (overexpressed/inhibited) for improving the tuberization in commercial varieties/cultivars of potato. In this review, information about the genes/proteins and their mechanism of action associated with the tuberization process is discussed.


Assuntos
Engenharia Genética , Solanum tuberosum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tubérculos
12.
Environ Microbiol ; 19(3): 1176-1188, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27943556

RESUMO

It is well established that resource quantity and elemental stoichiometry play major roles in shaping below and aboveground plant biodiversity, but their importance for shaping microbial diversity in soil remains unclear. Here, we used statistical modeling on a regional database covering 179 locations and six ecosystem types across Scotland to evaluate the roles of total carbon (C), nitrogen (N) and phosphorus (P) availabilities and ratios, together with land use, climate and biotic and abiotic factors, in determining regional scale patterns of soil bacterial diversity. We found that bacterial diversity and composition were primarily driven by variation in soil resource stoichiometry (total C:N:P ratios), itself linked to different land uses, and secondarily driven by other important biodiversity drivers such as climate, soil spatial heterogeneity, soil pH, root influence (plant-soil microbe interactions) and microbial biomass (soil microbe-microbe interactions). In aggregate, these findings provide evidence that nutrient stoichiometry is a strong predictor of bacterial diversity and composition at a regional scale.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Biomassa , Carbono/análise , Carbono/metabolismo , Clima , Ecossistema , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Plantas/microbiologia , Escócia
13.
J Environ Biol ; 37(2): 239-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27097443

RESUMO

Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers.


Assuntos
Culinária , Solanum tuberosum/classificação , Solanum tuberosum/enzimologia , beta-Frutofuranosidase/metabolismo , Armazenamento de Alimentos , Solanum tuberosum/genética , Temperamento
14.
Plant Physiol Biochem ; 97: 108-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26447684

RESUMO

Temperature is one of the most significant factors affecting potato yield. Night temperature beyond 18-22 °C drastically reduces tuber formation, constraining potato cultivation in tropics and subtropics. Identification of genes and pathways affected by high temperature is crucial for developing thermo tolerant cultivars for these regions. In the present study, two cultivars with contrasting tuberization behavior at night temperatures (24 °C) were selected for gene expression analysis using a customized microarray chip representing 39,031 potato genes. A total of 2500 genes were differentially expressed on 21 d and 4096 genes on 14 d after stress. Gene ontology and pathway analysis provided insights into the probable biological processes and pathways governing tuberization at elevated temperature. Pathway maps were constructed to graphically represent the gene expression patterns. Genes associated with photosynthesis, hormonal activity, sugar transporters and transcription factors were differentially expressed. The results are presented and discussed in terms of tuberization at high temperature. The effect of high temperature on expression of genes controlling tuberization was also analyzed. This study provided useful information on potato tuberization at elevated temperature and make available a framework for further investigations into heat stress in potato.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum tuberosum/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese , Tubérculos/genética , Tubérculos/metabolismo , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Estresse Fisiológico , Temperatura , Fatores de Transcrição/genética
15.
Genome ; 58(6): 305-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26284309

RESUMO

Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.


Assuntos
Regulação da Expressão Gênica de Plantas , Análise em Microsséries/métodos , Folhas de Planta/química , Tubérculos/química , RNA de Plantas/isolamento & purificação , Solanum tuberosum/genética , Metabolismo dos Carboidratos/genética , Fotossíntese/genética , RNA de Plantas/genética
16.
Biodegradation ; 23(6): 865-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22829348

RESUMO

Petroleum refining is traditionally based on the use of physicochemical processes such as distillation and chemical catalysis that operate under high temperatures and pressures conditions, which are energy intensive and costly. Biotechnology has become an important tool for providing new approaches in petroleum industry during oil production, refining and processing as well as managing environmentally safe pollutant remediation and disposal practices. Earlier biotechnology applications in the petroleum industry were limited to microbial enhanced oil recovery, applications of bioremediation to contaminated marine shorelines, soils and sludges. The potential role of bioprocess technology in this industry has now expanded further into the areas of biorefining and upgrading of fuels, production of fine chemicals, control of souring during production and air VOC biofiltration. In this paper we provide an overview of the major applications of bioprocesses and technology development in the petroleum industry both in upstream and downstream areas and highlight future challenges and opportunities.


Assuntos
Biotecnologia/métodos , Indústrias , Petróleo/análise , Bactérias/metabolismo , Biodegradação Ambiental , Óleos/análise
17.
Appl Environ Microbiol ; 77(13): 4618-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21571885

RESUMO

Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Microbiologia do Solo , Biodiversidade , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Nitrificação , Oxirredução , Filogenia , Pinus , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Solo/química , Chá , Árvores
18.
FEMS Microbiol Ecol ; 53(3): 369-78, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16329956

RESUMO

An enrichment culture technique was used for the isolation of microorganisms responsible for the enhanced biodegradation of the nematicide cadusafos in soils from a potato monoculture area in Northern Greece. Mineral salts medium supplemented with nitrogen (MSMN), where cadusafos (10 mg l(-1)) was the sole carbon source, and soil extract medium (SEM) were used for the isolation of cadusafos-degrading bacteria. Two pure bacterial cultures, named CadI and CadII, were isolated and subsequently characterized by sequencing of 16S rRNA genes. Isolate CadI showed 97.4% similarity to the 16S rRNA gene of a Flavobacterium strain, unlike CadII which showed 99.7% similarity to the 16S rRNA gene of a Sphingomonas paucimobilis. Both isolates rapidly metabolized cadusafos in MSMN and SEM within 48 h with concurrent population growth. This is the first report for the isolation and characterization of soil bacteria with the ability to degrade rapidly cadusafos and use it as a carbon source. Degradation of cadusafos by both isolates was accelerated when MSMN was supplemented with glucose. In contrast, addition of succinate in MSMN marginally reduced the degradation of cadusafos. Both isolates were also able to degrade completely ethoprophos, a nematicide chemical analog of cadusafos, but did not degrade the other organophosphorus nematicides tested such as isazofos and isofenphos. Inoculation of a soil freshly treated with cadusafos or ethoprophos (10 mg l(-1)) with high inoculum densities (4.3 x 10(8) cells g(-1)) of Sphingomonas paucimobilis resulted in the rapid degradation of both nematicides. These results indicate the potential of this bacterium to be used in the clean-up of contaminated pesticide waste in the environment.


Assuntos
Antinematódeos/metabolismo , Flavobacterium/metabolismo , Compostos Organotiofosforados/metabolismo , Praguicidas/metabolismo , Sphingomonas/metabolismo , Antinematódeos/análise , Biodegradação Ambiental , DNA Bacteriano/análise , DNA Bacteriano/genética , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Compostos Organotiofosforados/análise , Praguicidas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonas/genética , Sphingomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA