Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biopharm Drug Dispos ; 45(1): 15-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243990

RESUMO

Drug metabolism plays a crucial role in drug fate, including therapeutic inactivation or activation, as well as the formation of toxic compounds. This underscores the importance of understanding drug metabolism in drug discovery and development. Considering the substantial costs associated with traditional drug development methods, computational approaches have emerged as valuable tools for predicting the metabolic fate of drug candidates. With this in mind, the present study aimed to investigate the potential mechanisms underlying the modulation of microsomal cytochrome P450 3A1 (CYP3A1) enzyme activity by various phytochemicals found in Cichorium intybus L., commonly known as chicory. To achieve this goal, several in silico methods, including molecular docking and molecular dynamics (MD) simulation, were employed to explore computationally the microsomal CYP3A1 enzyme. Schrodinger software was utilized for the molecular docking study, which involved the interaction analysis between CYP3A1 and 28 phytoconstituents of Cichorium intybus. Virtual screening of 28 compounds from chicory led to the identification of the top five ranked compounds. These compounds were evaluated for drug-likeness properties, pharmacokinetic profiles, and predicted binding affinities to CYP3A1. Caffeoylshikimic acid and cichoric acid emerged as promising candidates due to their favorable characteristics, including good oral bioavailability and high binding affinities to CYP3A1. Molecular dynamics simulations were conducted to assess the stability of caffeoylshikimic acid within the CYP3A1 binding pocket. The results demonstrated that caffeoylshikimic acid maintained stable interactions with the enzyme throughout the simulation, suggesting its potential as an effective modulator of CYP3A1 activity. The findings of this study have the potential to provide valuable insights into the complex molecular mechanisms by which Cichorium intybus L. acts on hepatocytes and modulates CYP3A1 enzyme expression or activity. By elucidating the impact of these phytochemicals on drug metabolism, this research contributes to our understanding of how chicory may interact with drugs and influence their efficacy and safety profiles.


Assuntos
Cichorium intybus , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos/metabolismo , Compostos Fitoquímicos
2.
In Silico Pharmacol ; 9(1): 4, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442531

RESUMO

Glaucoma, the most perilous disease leading to blindness is a result of optical neuropathy. Accumulation of aqueous humor in the posterior chamber due to a large difference in the rate of formation and its drainage in the anterior chamber causes an increase in intraocular pressure (IOP) leading to damage of nerve cells. A literature survey has revealed that inhibition of the Rho guanosine triphosphatases (rho GTPase) pathway by specific inhibitors leads to the relaxation of contractile cells involved in the aqueous outflow pathway. Relaxation of the strained contractile cells results in increased outflow thereby releasing IOP. In the present study molecular docking has been used to screen twenty seven bioactive (17 natural compounds and 10 conventional drugs) compounds that may play a significant role in relaxing contractile cells by inhibiting rho-GTPase protein. Docking results showed that among all-natural bioactive compounds Cyanidin and Delphinidine have a good binding affinity (- 8.4 kcal/mol) than the top screened conventional drug molecule Mitomycin, (- 6.3 kcal/mol) when docked with rho-GTPase protein. Cyanidin and Delphinidin belong to anthocyanidin, a glycoside form of anthocyanins from Vaccinium myrtillus L. and Punica granatum. The resembling potential of Cyanidin and Delphinidin concerning the drug Mitomycin was confirmed through simulation analysis. Molecular dynamics study (MDS) for 100 ns, showed that the rho GTPase-Delphinidine complex structure was energetically more stable than rho GTPase-Cyaniding complex in comparison to rho GTPase-Mitomycin complex. The comparative study of both the selected hits (Cyanidin and Delphinidin) was assessed by RMSD, RMSF, Rg, SASA, H-bond, PCA MM/PBSA analysis. The analysis revealed that Delphinidine is more potent to inhibit the rho GTPase as compare to Cyaniding and available conventional drugs in terms of stability and binding free energy. Based on the results, these molecules have good pharmacokinetic and pharmacodynamics properties and will prove to be a promising lead compound as a future drug for Glaucoma.

3.
J Biomol Struct Dyn ; 36(8): 2147-2162, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28627969

RESUMO

Fasciola gigantica is the causative organism of fascioliasis and is responsible for major economic losses in livestock production globally. F. gigantica thioredoxin1 (FgTrx1) is an important redox-active enzyme involved in maintaining the redox homeostasis in the cell. To identify a potential anti-fasciolid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,740) against the FgTrx1 structure. The ligands were docked against FgTrx1 and 309 ligands were found to have better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 30 compounds were found to fit well for re-docking studies. After refinement by molecular docking and drug-likeness analysis, three potential inhibitors (ZINC15970091, ZINC9312362, and ZINC9312661) were identified. These three ligands were further subjected to molecular dynamics simulation (MDS) to compare the dynamics and stability of the protein structure after binding of the ligands. The binding free energy analyses were calculated to determine the intermolecular interactions. The results suggested that the two compounds had a binding free energy of -82.237, and -109.52 kJ.mol-1 for compounds with IDs ZINC9312362 and ZINC9312661, respectively. These predicted compounds displayed considerable pharmacological and structural properties to be drug candidates. We concluded that these two compounds could be potential drug candidates to fight against F. gigantica parasites.


Assuntos
Produtos Biológicos/química , Proteínas de Helminto/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tiorredoxinas/química , Sequência de Aminoácidos , Animais , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fasciola/genética , Fasciola/metabolismo , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/metabolismo , Ligantes , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Termodinâmica , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo
4.
Interdiscip Sci ; 8(4): 388-394, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26750924

RESUMO

Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Di-Hidropteroato Sintase/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Streptococcus pyogenes/metabolismo
5.
OMICS ; 17(11): 584-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24044365

RESUMO

The thyroid pathway represents a complex interaction of different glands for thyroid hormone synthesis. Thyrotropin releasing hormone is synthesized in the hypothalamus and regulates thyrotropin stimulating hormone gene expression in the pituitary gland. In order to understand the complexity of the thyroid pathways, and using experimental data retrieved from the biomedical literature (e.g., NCBI, HuGE Navigator, Protein Data Bank, and KEGG), we constructed a metabolic map of the thyroid hormone pathway at a molecular level and analyzed it topologically. A total of five hub nodes were predicted in regards to the transcription thyroid receptor (TR), cAMP response element-binding protein (CREB), signal transducer and activator of transcription 3 (STAT 3), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB), and activator protein 1 (AP-1) as being potentially important in study of thyroid disorders and as novel putative therapeutic drug targets. Notably, the thyroid receptor is a highly connected hub node and currently used as a therapeutic target in hypothyroidism. Our analysis represents the first comprehensive description of the thyroid pathway, which pertains to understanding the function of the protein and gene interaction networks. The findings from this study are therefore informative for pathophysiology and rational therapeutics of thyroid disorders.


Assuntos
Hipotireoidismo/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais , Glândula Tireoide/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Bases de Dados de Proteínas , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotireoidismo/genética , Hipotireoidismo/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Hipófise/metabolismo , Mapeamento de Interação de Proteínas , Receptores dos Hormônios Tireóideos/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Glândula Tireoide/patologia , Tireotropina/genética , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA