Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(2): 318-324, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601584

RESUMO

MOTIVATION: Tea is a cross-pollinated woody perennial plant, which is why, application of conventional breeding is limited for its genetic improvement. However, lack of the genome-wide high-density SNP markers and genome-wide haplotype information has greatly hampered the utilization of tea genetic resources toward fast-track tea breeding programs. To address this challenge, we have generated a first-generation haplotype map of tea (Tea HapMap-1). Out-crossing and highly heterozygous nature of tea plants, make them more complicated for DNA-level variant discovery. RESULTS: In this study, whole genome re-sequencing data of 369 tea genotypes were used to generate 2,334,564 biallelic SNPs and 1,447,985 InDels. Around 2928.04 million paired-end reads were used with an average mapping depth of ∼0.31× per accession. Identified polymorphic sites in this study will be useful in mapping the genomic regions responsible for important traits of tea. These resources lay the foundation for future research to understand the genetic diversity within tea germplasm and utilize genes that determine tea quality. This will further facilitate the understanding of tea genome evolution and tea metabolite pathways thus, offers an effective germplasm utilization for breeding the tea varieties. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Haplótipos , Projeto HapMap , Melhoramento Vegetal , Chá , Genoma de Planta
2.
Sci Rep ; 11(1): 110, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420248

RESUMO

Based upon the morphological characteristics, tea is classified botanically into 2 main types i.e. Assam and China, which are morphologically very distinct. Further, they are so easily pollinated among themselves, that a third category, Cambod type is also described. Although the general consensus of origin of tea is India, Burma and China adjoining area, yet specific origin of China and Assam type tea are not yet clear. Thus, we made an attempt to understand the origin of Indian tea through the comparative analysis of different chloroplast (cp) genomes under the Camellia genus by performing evolutionary study and comparing simple sequence repeats (SSRs) and codon usage distribution patterns among them. The Cp genome based phylogenetic analysis indicated that Indian Tea, TV1 formed a different group from that of China tea, indicating that TV1 might have undergone different domestications and hence owe different origins. The simple sequence repeats (SSRs) analysis and codon usage distribution patterns also supported the clustering order in the cp genome based phylogenetic tree.


Assuntos
Camellia/genética , Genoma de Cloroplastos , Camellia/classificação , Camellia sinensis/classificação , Camellia sinensis/genética , China , Evolução Molecular , Genoma de Planta , Índia , Repetições de Microssatélites , Filogenia
3.
Physiol Mol Biol Plants ; 27(12): 2833-2848, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035139

RESUMO

Pigeonpea (Cajanus cajan) is an important crop in semi-arid regions and a significant source of dietary proteins in India. The plant is sensitive to salinity stress, which adversely affects its productivity. Based on the dosage-dependent influence of salinity stress on the growth and ion contents in the young seedlings of pigeonpea, a comparative proteome analysis of control and salt stressed (150 mM NaCl) plants was conducted using 7 days-old seedlings. Among various amino acids, serine, aspartate and asparagine were the amino acids that showed increment in the root, whereas serine, aspartate and phenylalanine showed an upward trend in shoots under salt stress. Furthermore, a label-free and gel-free comparative Q-Tof, Liquid Chromatography-Mass spectrometry (LC-MS) revealed total of 118 differentially abundant proteins in roots and shoots with and without salt stress conditions. Proteins related to DNA-binding with one finger (Dof) transcription factor family and glycine betaine (GB) biosynthesis were differentially expressed in the shoot and root of the salinity-stressed seedlings. Exogenous application of choline on GB accumulation under salt stress showed the increase of GB pathway in C. cajan. Gene expression analysis for differentially abundant proteins revealed the higher induction of ethanolamine kinase (CcEthKin), choline-phosphate cytidylyltransferase 1-like (CcChoPh), serine hydroxymethyltransferase (CcSHMT) and Dof protein (CcDof29). The results indicate the importance of, choline precursor, serine biosynthetic pathways and glycine betaine synthesis in salinity stress tolerance. The glycine betaine protects plant from cellular damages and acts as osmoticum under stress condition. Protein interaction network (PIN) analysis demonstrated that 61% of the differentially expressed proteins exhibited positive interactions and 10% of them formed the center of the PIN. Further, The PIN analysis also highlighted the potential roles of the cytochrome c oxidases in sensing and signaling cascades governing salinity stress responses in pigeonpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01116-w.

4.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159215

RESUMO

Tea is a highly cross-pollinated, woody, perennial tree. High heterozygosity combined with a long gestational period makes conventional breeding a cumbersome process. Therefore, marker-assisted breeding is a better alternative approach when compared with conventional breeding. Considering the large genome size of tea (~3 Gb), information about simple sequence repeat (SSR) is scanty. Thus, we have taken advantage of the recently published tea genomes to identify large numbers of SSR markers in the tea. Besides the genomic sequences, we identified SSRs from the other publicly available sequences such as RNA-seq, GSS, ESTs and organelle genomes (chloroplasts and mitochondrial) and also searched published literature to catalog validated set of tea SSR markers. The complete exercise yielded a total of 935 547 SSRs. Out of the total, 82 SSRs were selected for validation among a diverse set of tea genotypes. Six primers (each with four to six alleles, an average of five alleles per locus) out of the total 27 polymorphic primers were used for a diversity analysis in 36 tea genotypes with mean polymorphic information content of 0.61-0.76. Finally, using all the information generated in this study, we have developed a user-friendly database (TeaMiD; http://indianteagenome.in:8080/teamid/) that hosts SSR from all the six resources including three nuclear genomes of tea and transcriptome sequences of 17 Camellia wild species. Database URL: http://indianteagenome.in:8080/teamid/.


Assuntos
Camellia sinensis/genética , Bases de Dados Genéticas , Marcadores Genéticos/genética , Genoma de Planta/genética , Genômica/métodos , Repetições de Microssatélites/genética , Alelos , Mineração de Dados/métodos , Genótipo , Internet , Polimorfismo Genético , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA