Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7263, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538715

RESUMO

Agro-waste is the outcome of the under-utilization of bioresources and a lack of knowledge to re-use this waste in proper ways or a circular economy approach. In the Indian medicinal system, the root of Cyperus scariosus (CS) is used at a large scale due to their vital medicinal properties. Unfortunately, the aerial part of CS is treated as agro-waste and is an under-utilized bioresource. Due to a lack of knowledge, CS is treated as a weed. This present study is the first ever attempt to explore CS leaves as medicinally and a nutrient rich source. To determine the food and nutritional values of the neglected part of Cyperus scariosus R.Br. (CS), i.e. CS leaves, phytochemicals and metal ions of CS were quantified by newly developed HPLC and ICPOES-based methods. The content of the phytochemicals observed in HPLC analysis for caffeic acid, catechin, epicatechin, trans-p-coumaric acid, and trans-ferulic acid was 10.51, 276.15, 279.09, 70.53, and 36.83 µg/g, respectively. In GC-MS/MS analysis, fatty acids including linolenic acid, phytol, palmitic acid, etc. were identified. In ICPOES analysis, the significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The TPC and TFC of the CS leaves was 17.933 mg GAE eq./g and 130.767 mg QCE eq./g along with an IC50 value of 2.78 mg/mL in the DPPH assay and better antacid activity was measured than the standard (CaCO3). The methanolic extract of CS leaves showed anti-microbial activity against Staphylococcus aureus (15 ± 2 mm), Pseudomonas aeruginosa (12 ± 2 mm) and Escherichia coli (10 ± 2 mm). In silico studies confirmed the in vitro results obtained from the antioxidant, antiacid, and anti-microbial studies. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the CS leaves. This study, thus, demonstrated the medicinal significance of the under-utilized part of CS and the conversion of agro-waste into mankind activity as a pharmaceutical potent material. Consequently, the present study highlighted that CS leaves have medicinal importance with good nutritional utility and have a large potential in the pharmaceutical industry along with improving bio-valorization and the environment.


Assuntos
Cyperus , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Folhas de Planta/química
2.
Chem Biodivers ; 20(12): e202301234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867394

RESUMO

The genus of Salix is used in food, medicine and nutraceuticals, and standardized by using the single marker compound Salicin only. Stem bark is the official part used for the preparation of various drugs, nutraceuticals and food products, which may lead to overexploitation and damage of tree. There is need to search substitution of the stem bark with leaf of Salix alba L. (SA), which is yet not reported. Comparative phytochemicals viz. Salicin, Procyanidin B1 and Catechin were quantified in the various parts of SA viz. heart wood (SA-HW), stem bark (SA-SB) and leaves (SA-L) of Salix alba L.by using newly developed HPLC method. It was observed that SA-HW and SA-L contained far better amount of Salicin, Procyanidin B and Catechin as compared to SA-SB (SA-HW~SA-L≫SA-SB). Essential and toxic metal ions of all three parts were analysed using newly developed ICP-OES method, where SA-L were founded as a rich source of micronutrients and essential metal ions as compared to SA-SB and SA-HW. GC-MS analysis has shown the presence of fatty acids and volatile compounds. The observed TPC and TFC values for all three parts were ranged from 2.69 to 32.30 mg GAE/g of wt. and 37.57 to 220.76 mg QCE/g of wt. respectively. In DPPH assay the IC50 values of SA-SB, SA-HW, and SA-L were 1.09 (±0.02), 5.42 (±0.08), and 8.82 (±0.10) mg/mL, respectively. The order of antibacterial activities against E. coli, S. aureus, P. aeruginosa, and B. subtilis strains was SA-L>SA-HW>SA-SB with strong antibacterial activities against S. aureus, and B. subtilis strains. The antacid activities order was SA-L>SA-SB>SA-HW. The leaves of SA have shown significant source of nutrients, phytochemicals and medicinal properties than SA-HW and SA-SB. The leaves of SA may be considered as substitute of stem bark to save the environment or to avoid over exploitation, but after the complete pharmacological and toxicological studies.


Assuntos
Anti-Infecciosos , Antiulcerosos , Catequina , Salix , Catequina/farmacologia , Antioxidantes/análise , Antiácidos/análise , Antiácidos/metabolismo , Salix/química , Salix/metabolismo , Madeira , Casca de Planta/química , Escherichia coli , Staphylococcus aureus , Extratos Vegetais/química , Compostos Fitoquímicos/química , Antibacterianos/metabolismo , Folhas de Planta , Anti-Infecciosos/metabolismo
3.
Chemosphere ; 345: 140470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858768

RESUMO

Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.


Assuntos
Microalgas , Purificação da Água , Águas Residuárias , Nitrogênio , Dióxido de Carbono , Fósforo , Biomassa , Biocombustíveis
4.
Environ Pollut ; 300: 118975, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157935

RESUMO

Environmental pollution caused by the discharge of raw and partly treated distillery effluent has become a serious and threatening problem due to its high pollution load. The aim of the present study was to assess the physicochemical load in alcohol distillery effluent before and after biomethanation treatment and the cyto- and genotoxicity effects of refractory pollutants emanated in raw/untreated and biomethanated distillery effluent on the ultrastructural and biochemical responses of Allium cepa root tip cells. Physicochemical analysis revealed high biochemical oxygen demand (BOD: 47840-36651 mg L-1), chemical oxygen demand (COD: 93452-84500 mg L-1) and total dissolved solids (TDS: 64251-74652 mg L-1) in raw and biomethanated effluent along with metal(loid)s (Fe: 456.152-346.26; Zn: 1.654-1.465; Cu: 0.648-0.562; Ni: 1.012-0.951, and Pb: 0.264 mg L-1) which were beyond the safe discharge values prescribed by the environmental regulatory agencies. The UV-Visible and Fourier transform infrared spectrophotometry analyses confirmed the high levels of organic, inorganic, and mixed contaminants discharged in raw and biomethanated distillery effluents. Furthermore, GC-MS analysis characterised chemical contaminants, such as hexadecanoic acid, butanedioic acid, bis(trimethylsilyl) ester; hexadecane, 2,6,11,15-tetramethyl, stigmasterol, and ß-sitosterol trimethylsilyl ether that have been reported as androgenic-mutagenic, and endocrine disrupting chemicals by the United States Environmental Protection Agency (U.S. EPA). The cytotoxicity measured by A. cepa showed dose depended inhibition root growth inhibition and simultaneous reduction in mitotic index in tested effluents. The chromosomal aberrations studies resulted in laggard chromosomes, sticky chromosomes, vagrant chromosomes, chromosome loss, c-mitosis, chromosome bridge, abnormal metaphase, and disturbed anaphase as found in a dose-dependent manner. Furthermore, dose-dependent enhancement in the levels of malondialdehyde, hydrogen peroxide, and antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, and catalase were found to be higher in raw effluents treated root cells compared to biomethanated distillery effluent. Analysis of ultrastructural changes in root tip cells by TEM analysis revealed dramatic changes in the morphology of cell organelles and accumulation of metallic elements in and on the surface tissues. The results concluded that the discharged distillery effluents retained certain toxic pollutants which imposed cytotoxic and genotoxic hazards to A. cepa. Thus, for the sake of environmental protection, the raw as well as the disposed biomethanated effluent must be efficiently treated before its dumping into the terrestrial ecosystem.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Dano ao DNA , Ecossistema , Poluentes Ambientais/análise , Cebolas , Poluentes Químicos da Água/análise
5.
J Environ Chem Eng ; 8(5): 104144, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33520648

RESUMO

The COVID-19 outbreak has came in existence in late December 2019 at Wuhan, China. It is declared as an epidemic by WHO. The rationale of this study is to provide the details regarding prevention, environment concern, social economic consequences, and medicines for COVID-19. Social distancing, screening, lockdown, use of mask and application of sanitizer or soap at regular time interval is the best prevention against COVID-19. The "oral-feces" transmission of COVID-19 is threat to environment. Improper disposal of medical/biomedical and human waste may harm the total environment. Nitrifying-enriched activated sludge i.e. NAS approach can play important role to clean the environment compartments like sludge and waste. COVID-19 has shown impact on social and economic life, but there is no alternate until the drug discovery. In medicine or treatment of COVID-19 point of views, an integrated approach between modern and traditional medicine system may ensure an early prevention of further viral spread. Based on the symptoms of COVID-19, list of herbs and drugs of Indian Medicine System has been searched and reported. To develop the potential drug against COVID-19, the detailed experimentation and clinical trials to be performed for future prospective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA