Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 24(9): 810-829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288805

RESUMO

BACKGROUND: The genus Costus is the largest genus in the family Costaceae and encompasses about 150 known species. Among these, Costus pictus D. Don (Synonym: Costus mexicanus) is a traditional medicinal herb used to treat diabetes and other ailments. Currently, available treatment options in modern medicine have several adverse effects. Herbal medicines are gaining importance as they are cost-effective and display improved therapeutic effects with fewer side effects. Scientists have been seeking therapeutic compounds in plants, and various in vitro and in vivo studies report Costus pictus D. Don as a potential source in treating various diseases. Phytochemicals with various pharmacological properties of Costus pictus D. Don, viz. anti-cancer, anti-oxidant, diuretic, analgesic, and anti-microbial have been worked out and reported in the literature. OBJECTIVE: The aim of the review is to categorize and summarize the available information on phytochemicals and pharmacological properties of Costus pictus D. Don and suggest outlooks for future research. METHODS: This review combined scientific data regarding the use of Costus pictus D. Don plant for the management of diabetes and other ailments. A systematic search was performed on Costus pictus plant with anti-diabetic, anti-cancer, anti-microbial, anti-oxidant, and other pharmacological properties using several search engines such as Google Scholar, PubMed, Science Direct, Sci-Finder, other online journals and books for detailed analysis. RESULTS: Research data compilation and critical review of the information would be beneficial for further exploration of its pharmacological and phytochemical aspects and, consequently, new drug development. Bioactivity-guided fractionation, isolation, and purification of new chemical entities from the plant as well as pharmacological evaluation of the same will lead to the search for safe and effective novel drugs for better healthcare. CONCLUSION: This review critically summarizes the reports on natural compounds, and different extract of Costus pictus D. Don with their potent anti-diabetic activity along with other pharmacological activity. Since this review has been presented in a very interactive manner showing the geographical region of availability, parts of plant used, mechanism of action and phytoconstituents in different extracts of Costus pictus responsible for particular action, it will be of great importance to the interested readers to focus on the development of the new drug leads for the treatment of diseases.


Assuntos
Costus , Hipoglicemiantes , Compostos Fitoquímicos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Humanos , Costus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Diabetes Mellitus/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/química , Plantas Medicinais/química
2.
Int J Biol Macromol ; 233: 123565, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740131

RESUMO

In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 µL/mL, respectively and AFB1 production at 5.0 µL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.


Assuntos
Quitosana , Citrus sinensis , Citrus , Filmes Comestíveis , Óleos Voláteis , Valeriana , Aflatoxina B1/metabolismo , Óleos Voláteis/química , Quitosana/química , Citrus sinensis/metabolismo , Valeriana/metabolismo , Frutas/química , Citrus/metabolismo , Melhoria de Qualidade , Fungos/metabolismo , Aspergillus flavus , Antifúngicos/farmacologia
3.
Antioxidants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943093

RESUMO

Tuberculosis (TB) is a recurrent and progressive disease, with high mortality rates worldwide. The drug-resistance phenomenon of Mycobacterium tuberculosis is a major obstruction of allelopathy treatment. An adverse side effect of allelopathic treatment is that it causes serious health complications. The search for suitable alternatives of conventional regimens is needed, i.e., by considering medicinal plant secondary metabolites to explore anti-TB drugs, targeting the action site of M. tuberculosis. Nowadays, plant-derived secondary metabolites are widely known for their beneficial uses, i.e., as antioxidants, antimicrobial agents, and in the treatment of a wide range of chronic human diseases (e.g., tuberculosis), and are known to "thwart" disease virulence. In this regard, in silico studies can reveal the inhibitory potential of plant-derived secondary metabolites against Mycobacterium at the very early stage of infection. Computational approaches based on different algorithms could play a significant role in screening plant metabolites against disease virulence of tuberculosis for drug designing.

4.
Int J Biol Macromol ; 171: 480-490, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428956

RESUMO

In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 µL/mL and 0.75 µL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 µL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.


Assuntos
Antifúngicos/administração & dosagem , Antioxidantes/administração & dosagem , Arachis/microbiologia , Aspergillus flavus/efeitos dos fármacos , Cananga/química , Conservantes de Alimentos/administração & dosagem , Nanocápsulas/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Aflatoxina B1/metabolismo , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Aspergillus flavus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Emulsões , Conservantes de Alimentos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Química Verde , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sementes/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Food Chem Toxicol ; 143: 111536, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640350

RESUMO

Origanum majorana essential oil (OmEO) encapsulated into chitosan nanoemulsion is being reported as a novel preservative of stored food items against fungi, aflatoxin B1 (AFB1) contamination and lipid peroxidation. The major component of OmEO identified through GC-MS was terpinen-4-ol (28.92%). HR-SEM, FTIR and XRD analyses confirmed successful encapsulation of OmEO into chitosan nanoemulsion (OmEO-CsNe). The results showed remarkable improvement in efficacy after nanoencapsulation, since OmEO-CsNe completely inhibited the growth and AFB1 production by Aspergillus flavus at 1.0 µL/mL, which was 2.5 and 1.5 µL/mL, respectively for OmEO. The inhibition of ergosterol followed by release of cellular ions and 260 and 280 nm absorbing materials demonstrated plasma membrane as possible antifungal target. Inhibition of methylglyoxal confirmed antiaflatoxigenic mode of action. OmEO-CsNe showed enhanced antioxidant activity (IC50 = 14.94 and 5.53 µL/mL for DPPH and ABTS, respectively) and caused in situ inhibition of lipid peroxidation and AFB1 production in maize (third most important staple crop after wheat and rice) without altering their sensory attributes and presented safety profile (LD50 = 11,889 µL/kg) when tested on mice. The findings indicate that the encapsulation considerably enhances the performance of OmEO, therefore can be recommended as a promising antifungal agent to extend the shelf-life of food items.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Origanum/química , Óleos de Plantas/farmacologia , Animais , Antifúngicos/química , Antioxidantes/química , Quitosana/química , Ergosterol , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Fungos/efeitos dos fármacos , Peroxidação de Lipídeos , Masculino , Camundongos , Nanoestruturas , Óleos Voláteis/química , Óleos Voláteis/toxicidade , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Sementes/microbiologia , Testes de Toxicidade , Zea mays/microbiologia
6.
Ecotoxicol Environ Saf ; 189: 110000, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787384

RESUMO

The present study deals with encapsulation of Myristica fragrans essential oil (MFEO) into chitosan nano-matrix, their characterization and assessment of antimicrobial activity, aflatoxin inhibitory potential, safety profiling and in situ efficacy in stored rice as environment friendly effective preservative to control the postharvest losses of food commodities under storage. Surface morphology of MFEO-chitosan nanoemulsion as well as encapsulation of MFEO was confirmed through SEM, FTIR and XRD analysis. In vitro release characteristics with biphasic burst explained controlled volatilization from nanoencapsulated MFEO. Unencapsulated MFEO exhibited fungitoxicity against 15 food borne molds and inhibited aflatoxin B1 secretion by toxigenic Aspergillus flavus LHP R14 strain. In contrast, nanoencapsulated MFEO showed better fungitoxicity and inhibitory effect on aflatoxin biosynthesis at lower doses. In situ efficacy of unencapsulated and nanoencapsulated MFEO on stored rice seeds exhibited effective protection against fungal infestation, aflatoxin B1 contamination, and lipid peroxidation. Both the unencapsulated and nanoencapsulated MFEO did not affect the germination of stored rice seeds confirming non-phytotoxic nature. In addition, negligible mammalian toxicity of unencapsulated MFEO (LD50 = 14,289.32 µL/kg body weight) and MFEO loaded chitosan nanoemulsion (LD50 = 9231.89 µL/kg body weight) as revealed through favorable safety profile recommend the industrial significance of nanoencapsulated MFEO as an effective green alternative to environmentally hazardous synthetic pesticides for protection of food commodities during storage.


Assuntos
Aflatoxinas/antagonistas & inibidores , Antifúngicos/farmacologia , Myristica/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Aspergillus flavus/efeitos dos fármacos , Germinação/efeitos dos fármacos , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Oryza/efeitos dos fármacos , Oryza/microbiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/efeitos dos fármacos , Sementes/microbiologia
7.
Food Chem Toxicol ; 111: 102-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29126800

RESUMO

The study reports efficacy of Illicium verum essential oil (IvEO) against food borne moudls and its nanoencapsulation for enhancing antifungal and antiaflatoxigenic potency. Chemical characterization of the IvEO showed anethole (89.12%) as major compound followed by estragole (4.859%). The IvEO showed broad fungitoxic spectrum against common food borne moulds. It's minimum inhibitory concentration (MIC) and minimum aflatoxin B1 inhibitory concentration (MAIC) against aflatoxigenic strain Aspergillus flavus LHP-PV-1 were 0.7, and 0.5 µL/mL respectively. Morphological observations of treatment sets by SEM and TEM along with decrease in ergosterol content and enhanced leakage of Ca2+, K+ and Mg2+ ions denoted fungal cell membrane as site of action. The IvEO showed promising free radical scavenging activity and favourable safety profile with high LD50 value on mice. The IvEO also exhibited considerable protection of Pistacia vera from fungal contamination and complete protection from aflatoxin B1 contamination in storage containers. Nanoencapsulated IvEO in gel form and lyophilized form exhibited enhanced efficacy as fungal inhibitor and aflatoxin suppressor. The chemically characterised IvEO may be recommended as plant based preservative having favourable safety and its nanocapsules may be of industrial significance as shelf life enhancer of food items. This is the first report on in situ antiaflatoxigenic efficacy and nanoencapsulation of IvEO.


Assuntos
Aflatoxina B1/química , Conservantes de Alimentos/farmacologia , Illicium/química , Óleos de Plantas/farmacologia , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/ultraestrutura , Conservantes de Alimentos/química , Radicais Livres , Fungos/efeitos dos fármacos , Camundongos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pistacia/microbiologia , Extratos Vegetais/farmacologia , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA