Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298516

RESUMO

Hypobaric hypoxia under chromic conditions triggers hypoxic pulmonary vasoconstriction (HPV) and right ventricular hypertrophy (RVH). The role of zinc (Zn) under hypoxia is controversial and remains unclear. We evaluated the effect of Zn supplementation in prolonged hypobaric hypoxia on HIF2α/MTF-1/MT/ZIP12/PKCε pathway in the lung and RVH. Wistar rats were exposed to hypobaric hypoxia for 30 days and randomly allocated into three groups: chronic hypoxia (CH); intermittent hypoxia (2 days hypoxia/2 days normoxia; CIH); and normoxia (sea level control; NX). Each group was subdivided (n = 8) to receive either 1% Zn sulfate solution (z) or saline (s) intraperitoneally. Body weight, hemoglobin, and RVH were measured. Zn levels were evaluated in plasma and lung tissue. Additionally, the lipid peroxidation levels, HIF2α/MTF-1/MT/ZIP12/PKCε protein expression and pulmonary artery remodeling were measured in the lung. The CIH and CH groups showed decreased plasma Zn and body weight and increased hemoglobin, RVH, and vascular remodeling; the CH group also showed increased lipid peroxidation. Zn administration under hypobaric hypoxia upregulated the HIF2α/MTF-1/MT/ZIP12/PKCε pathway and increased RVH in the intermittent zinc group. Under intermittent hypobaric hypoxia, Zn dysregulation could participate in RVH development through alterations in the pulmonary HIF2α/MTF1/MT/ZIP12/PKCε pathway.


Assuntos
Pulmão , Zinco , Ratos , Animais , Ratos Wistar , Pulmão/metabolismo , Hipóxia/metabolismo , Hipertrofia Ventricular Direita/etiologia , Peso Corporal
2.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899304

RESUMO

High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1ß, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1ß, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.


Assuntos
Insuficiência Cardíaca/patologia , Hipertrofia Ventricular Direita/patologia , Hipóxia/fisiopatologia , Inflamação/complicações , Estresse Oxidativo , Proteínas Quinases/metabolismo , Animais , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Humanos , Hipertrofia Ventricular Direita/imunologia , Hipertrofia Ventricular Direita/metabolismo , Inflamação/imunologia , Inflamação/patologia
3.
J Clin Med ; 9(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283799

RESUMO

Asymmetric dimethylarginine (ADMA) inhibits nitric oxide (NO) synthesis. It is a risk marker for cardiovascular events and mortality in patients with cardiometabolic diseases and in population-based studies. Plasma or serum analysis of ADMA may be hampered by pre-analytical sample handling. We validated a dried blood spot (DBS) assay for ADMA and L-arginine and show here that this assay has excellent variabilities and reproducibilities. Filter paper is impregnated with the arginase inhibitor nor-NOHA (Nω-hydroxy-nor-Arginine) to avoid L-arginine degradation. Clinical validation of this DBS assay confirms elevated ADMA concentration in hemodialysis patients as compared to healthy controls, higher ADMA concentrations in men versus women, and elevated L-arginine concentration in subjects supplemented with L-arginine. The DBS assay was used in a cohort study involving 100 primarily healthy subjects in the Andean region to assess the impact of chronic intermittent hypoxia on ADMA and L-arginine; ADMA DBS concentration at sea level was prospectively associated with pulmonary hypertension after six months of exposure to 3500 m. In a cohort of 753 individuals, L-arginine/ADMA ratio significantly decreased with increasing number of traditional cardiovascular risk factors. Analysis of ADMA and L-arginine in DBS is a reliable and reproducible method for quantitation of these markers in field studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA