Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 10(12): 1041-1056, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-24737693

RESUMO

The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-ß1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-ß1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-ß1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-ß1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Aorta/metabolismo , Doxiciclina , Sistemas de Liberação de Medicamentos/métodos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Poliglactina 910/química , Fator de Crescimento Transformador beta1 , Aorta/citologia , Doxiciclina/química , Doxiciclina/farmacocinética , Doxiciclina/farmacologia , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta1/farmacocinética , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA