Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 43(10): 5279-5287, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28105713

RESUMO

PURPOSE: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). METHODS: Eighteen DTC patients were administered 1.11 GBq of 131 I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3-7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimated using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. RESULTS: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2-176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2-145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in theS-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. CONCLUSIONS: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.


Assuntos
Radioisótopos do Iodo/administração & dosagem , Radiometria/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/radioterapia , Calibragem , Feminino , Humanos , Masculino , Imagens de Fantasmas , Radiometria/instrumentação , Dosagem Radioterapêutica , Radioterapia Adjuvante/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Iodeto de Sódio/administração & dosagem , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia , Fatores de Tempo , Resultado do Tratamento
2.
Br J Nutr ; 111(3): 547-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23930999

RESUMO

Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4 MBq [75Se]L-SeMet ([75Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [75Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87·9 (sd 3·3)% of the administered activity of [75Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8·2 (sd 1·1)% of the activity. Time-activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet.


Assuntos
Absorção Intestinal , Modelos Biológicos , Compostos Radiofarmacêuticos/farmacocinética , Selênio/metabolismo , Selenometionina/farmacocinética , Adulto , Fezes/química , Câmaras gama , Humanos , Masculino , Período Pós-Prandial , Cintilografia , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/urina , Radioisótopos de Selênio , Selenometionina/análise , Selenometionina/sangue , Selenometionina/urina , Distribuição Tecidual , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA