Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Curr Opin Plant Biol ; 75: 102395, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37311365

RESUMO

Proteinogenic dipeptides, with few known exceptions, are products of protein degradation. Dipeptide levels respond to the changes in the environment, often in a dipeptide-specific manner. What drives this specificity is currently unknown; what likely contributes is the activity of the different peptidases that cleave off the terminal dipeptide from the longer peptides. Dipeptidases that degrade dipeptides to amino acids, and the turnover rates of the "substrate" proteins/peptides. Plants can both uptake dipeptides from the soil, but dipeptides are also found in root exudates. Dipeptide transporters, members of the proton-coupled peptide transporters NTR1/PTR family, contribute to nitrogen reallocation between the sink and source tissues. Besides their role in nitrogen distribution, it becomes increasingly clear that dipeptides may also serve regulatory, dipeptide-specific functions. Dipeptides are found in protein complexes affecting the activity of their protein partners. Moreover, dipeptide supplementation leads to cellular phenotypes reflected in changes in plant growth and stress tolerance. Herein we will review the current understanding of dipeptides' metabolism, transport, and functions and discuss significant challenges and future directions for the comprehensive characterization of this fascinating but underrated group of small-molecule compounds.


Assuntos
Aminoácidos , Dipeptídeos , Dipeptídeos/química , Dipeptídeos/metabolismo , Transporte Biológico , Aminoácidos/metabolismo , Nitrogênio
2.
Plant J ; 115(5): 1214-1230, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37219088

RESUMO

Identification of protein interactors is ideally suited for the functional characterization of small molecules. 3',5'-cAMP is an evolutionary ancient signaling metabolite largely uncharacterized in plants. To tap into the physiological roles of 3',5'-cAMP, we used a chemo-proteomics approach, thermal proteome profiling (TPP), for the unbiased identification of 3',5'-cAMP protein targets. TPP measures shifts in the protein thermal stability upon ligand binding. Comprehensive proteomics analysis yielded a list of 51 proteins significantly altered in their thermal stability upon incubation with 3',5'-cAMP. The list contained metabolic enzymes, ribosomal subunits, translation initiation factors, and proteins associated with the regulation of plant growth such as CELL DIVISION CYCLE 48. To functionally validate obtained results, we focused on the role of 3',5'-cAMP in regulating the actin cytoskeleton suggested by the presence of actin among the 51 identified proteins. 3',5'-cAMP supplementation affected actin organization by inducing actin-bundling. Consistent with these results, the increase in 3',5'-cAMP levels, obtained either by feeding or by chemical modulation of 3',5'-cAMP metabolism, was sufficient to partially rescue the short hypocotyl phenotype of the actin2 actin7 mutant, severely compromised in actin level. The observed rescue was specific to 3',5'-cAMP, as demonstrated using a positional isomer 2',3'-cAMP, and true for the nanomolar 3',5'-cAMP concentrations reported for plant cells. In vitro characterization of the 3',5'-cAMP-actin pairing argues against a direct interaction between actin and 3',5'-cAMP. Alternative mechanisms by which 3',5'-cAMP would affect actin dynamics, such as by interfering with calcium signaling, are discussed. In summary, our work provides a specific resource, 3',5'-cAMP interactome, as well as functional insight into 3',5'-cAMP-mediated regulation in plants.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Plantas/metabolismo , Sinalização do Cálcio
3.
Plants (Basel) ; 9(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674508

RESUMO

Conventional preparation methods of plant ribosomes fail to resolve non-translating chloroplast or cytoplasmic ribosome subunits from translating fractions. We established preparation of these ribosome complexes from Arabidopsis thaliana leaf, root, and seed tissues by optimized sucrose density gradient centrifugation of protease protected plant extracts. The method co-purified non-translating 30S and 40S ribosome subunits separated non-translating 50S from 60S subunits, and resolved assembled monosomes from low oligomeric polysomes. Combining ribosome fractionation with microfluidic rRNA analysis and proteomics, we characterized the rRNA and ribosomal protein (RP) composition. The identity of cytoplasmic and chloroplast ribosome complexes and the presence of ribosome biogenesis factors in the 60S-80S sedimentation interval were verified. In vivo cross-linking of leaf tissue stabilized ribosome biogenesis complexes, but induced polysome run-off. Omitting cross-linking, the established paired fractionation and proteome analysis monitored relative abundances of plant chloroplast and cytoplasmic ribosome fractions and enabled analysis of RP composition and ribosome associated proteins including transiently associated biogenesis factors.

4.
Trends Biotechnol ; 34(10): 781-790, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27113632

RESUMO

Ignorant of the New World, Europeans believed in El Dorado, a hidden city of immense wealth in gold. Many consider the Amazonian forest to be a medicinal treasure chest and potentially the largest drug dispensary in the world. Yet, the quest to obtain drugs from indigenous tropical plants remains elusive. Here, we assess the potential of new technologies to tap into the metabolic diversity of tropical plants. We also consider how regulations affect access to plant resources. We conclude that, although the road to this medicinal El Dorado may be long and arduous, many other smaller but still valuable finds are hidden along the way.


Assuntos
Bioprospecção , Descoberta de Drogas , Plantas Medicinais , Floresta Úmida , Brasil , Biologia Computacional , Humanos
5.
Front Plant Sci ; 5: 653, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25505476

RESUMO

Brazilian name canga refers to the ecosystems associated with superficial iron crusts typical for the Brazilian state of Minas Gerais (MG) and some parts of Amazon (Flona de Carajas). Iron stone is associated with mountain plateaux and so, in addition to high metal concentrations (particularly iron and manganese), canga ecosystems, as other rock outcrops, are characterized by isolation and environmental harshness. Canga inselbergs, all together, occupy no more than 200 km(2) of area spread over thousands of km(2) of the Iron Quadrangle (MG) and the Flona de Carajas, resulting in considerable beta biodiversity. Moreover, the presence of different microhabitats within the iron crust is associated with high alpha biodiversity. Hundreds of angiosperm species have been reported so far across remote canga inselbergs and different micro-habitats. Among these are endemics such as the cactus Arthrocereus glaziovii and the medicinal plant Pilocarpus microphyllus. Canga is also home to iron and manganese metallophytes; species that evolved to tolerate high metal concentrations. These are particularly interesting to study metal homeostasis as both iron and manganese are essential plant micro-elements. Besides being models for metal metabolism, metallophytes can be used for bio-remediation of metal contaminated sites, and as such are considered among priority species for canga restoration. "Biodiversity mining" is not the only mining business attracted to canga. Open cast iron mining generates as much as 5-6% of Brazilian gross domestic product and dialog between mining companies, government, society, and ecologists, enforced by legal regulation, is ongoing to find compromise for canga protection, and where mining is unavoidable for ecosystem restoration. Environmental factors that shaped canga vegetation, canga biodiversity, physiological mechanisms to play a role, and ways to protect and restore canga will be reviewed.

6.
Rapid Commun Mass Spectrom ; 22(23): 3949-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18980256

RESUMO

Anthocyanins are secondary plant metabolites ubiquitous in the plant kingdom. They have different biological activities, so monitoring their content in plant tissue or in feed/food derived from plants may be an important task in different projects from various fields of molecular biology and biotechnology. Profiling of secondary metabolites with high-performance liquid chromatography/mass spectrometry (HPLC/MS) systems is time-consuming, especially when many samples have to be checked within a defined time frame with a reasonable number of repetitions according to the metabolomic standards. Even application of the advanced ultra-performance liquid chromatography (UPLC)/MS or equivalent systems would require a long time for analysis of numerous samples. We demonstrate the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the assessment of level (concentration) of anthocyanins in leaf tissues of four Arabidopsis thaliana ecotypes grown at normal (20 degrees C/16 degrees C day/night) and decreased (4 degrees C) temperature. The quantitative results were obtained for anthocyanins with MALDI-TOF MS using ferulic acid as a matrix. The amounts of anthocyanins in leaves of A. thaliana varied from 0.3-2.5 microg per gram of leaves for ecotypes Col-0 and C24, respectively, and contents of these markedly increased in plants grown in the cold. The applied analytical method exhibited better repeatability of measurements than obtained with an HPLC/ion trap MS system.


Assuntos
Antocianinas/análise , Arabidopsis/química , Extratos Vegetais/química , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Antocianinas/química , Ácidos Cumáricos , Reprodutibilidade dos Testes
7.
New Phytol ; 175(3): 425-438, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17635218

RESUMO

In a phenotypic screen of plants constitutively overexpressing DOF (DNA-binding-with-one-finger) transcription factors under the control of the Cauliflower mosaic virus 35S promoter, AtDOF4;2 was identified as a gene inducing a bushy plant phenotype and potentially being involved in the regulation of phenylpropanoid metabolism in Arabidopsis. Further molecular and biochemical characterization was performed in parallel using transgenic plants with enhanced and reduced AtDOF4;2 expression. The expression pattern of AtDOF4;2 was determined by quantitative real-time polymerase chain reaction (Q-RTPCR) and through promoter-beta-glucuronidase (GUS) fusions, indicating preferential transcriptional activity in axillary buds of the flower stalk, the hypocotyls periderm and in tapetum cells. Constitutive overexpression and RNAi-mediated silencing of AtDOF4;2 caused reciprocal changes in the expression of flavonoid biosynthetic genes and the accumulation of flavonoids under cold and high-light conditions. Moreover, tapetum-specific overexpression of AtDOF4;2 led to pollen grains devoid of flavonols. In contrast to its negative influence on flavonoid biosynthesis and coincident with high expression in the periderm and tapetum, AtDOF4;2 positively influences the production of hydroxycinnamic acids in the hypocotyl and flower buds, implicating its possible importance for suberin and sporopollenin production. These data provide evidence that AtDOF4;2, influences phenylpropanoid metabolism in an environmental and tissue-specific manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Fenótipo , Pólen/metabolismo
8.
J Biol Chem ; 280(41): 34888-99, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16081412

RESUMO

Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at approximately 80 mum inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/fisiologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Arabidopsis/química , Bactérias/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cisteína/química , DNA Complementar/metabolismo , Detergentes/farmacologia , Diglicerídeos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glicerol/análogos & derivados , Glicerol/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Ácidos Oleicos/química , Ácidos Fosfatídicos/química , Proteínas de Plantas/química , Raízes de Plantas/metabolismo , Estrutura Terciária de Proteína , Pirimidinonas/farmacologia , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato , Tiazóis/farmacologia , Fatores de Tempo
9.
BMC Plant Biol ; 5: 1, 2005 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-15701180

RESUMO

BACKGROUND: Even though the catecholamines (dopamine, norepinephrine and epinephrine) have been detected in plants their role is poorly documented. Correlations between norepinephrine, soluble sugars and starch concentration have been recently reported for potato plants over-expressing tyrosine decarboxylase, the enzyme mediating the first step of catecholamine synthesis. More recently norepinephrine level was shown to significantly increase after osmotic stress, abscisic acid treatment and wounding. Therefore, it is possible that catecholamines might play a role in plant stress responses by modulating primary carbon metabolism, possibly by a mechanism similar to that in animal cells. Since to date no catecholamine receptor has been identified in plants we transformed potato plants with a cDNA encoding human dopamine receptor (HD1). RESULTS: Tuber analysis of transgenic plants revealed changes in the activities of key enzymes mediating sucrose to starch conversion (ADP-glucose phosphorylase and sucrose synthase) and sucrose synthesis (sucrose phosphate synthase) leading to altered content of both soluble sugars and starch. Surprisingly the catecholamine level measured in transgenic plants was significantly increased; the reason for this is as yet unknown. However the presence of the receptor affected a broader range of enzyme activities than those affected by the massive accumulation of norepinephrine reported for plants over-expressing tyrosine decarboxylase. Therefore, it is suggested that the presence of the exogenous receptor activates catecholamine cAMP signalling in plants. CONCLUSIONS: Our data support the possible involvement of catecholamines in regulating plant carbon metabolism via cAMP signalling pathway.


Assuntos
Carbono/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Receptores Dopaminérgicos/metabolismo , Solanum tuberosum/genética , Metabolismo dos Carboidratos , Catecolaminas/metabolismo , AMP Cíclico/metabolismo , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Glicólise/fisiologia , Humanos , Fenótipo , Plantas Geneticamente Modificadas/genética , Receptores Dopaminérgicos/genética , Transdução de Sinais , Solanum tuberosum/metabolismo
10.
Plant Physiol Biochem ; 42(7-8): 593-600, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15331087

RESUMO

The catecholamine compounds in potato (Solanum tuberosum L.) leaves and tubers have been identified by gas chromatography coupled to mass spectrometry (GC-MS) measurements. The finding that the catecholamine level is dramatically increased upon tyrosine decarboxylase (TD) overexpression potentiates the investigation on their physiological significance in plants. It was then evidenced that catecholamines play an important role in regulation of starch-sucrose conversion in plants. In this paper we investigated catecholamine biosynthetic pathway in potato plants exposed to the different stress conditions. The activation of TD (EC 4.1.1.25), tyrosine hydroxylase (TH, EC 1.14.18.1) and l-Dopa decarboxylase (DD, EC 4.1.1.25) was a characteristic feature of the potato leaves treated with abscisic acid (ABA). In high salt condition only TD activity was increased and in drought both TH and DD were activated. UV light activated predominantly DD activity. Leaves of plants grown in the dark and in red light circumstances were characterized by significantly decreased activities of all the three enzymes whereas those grown in cold were characterized by the decreased activity of DD only. In all, stress conditions the normetanephrine level and thus catecholamine catabolism was significantly decreased. Increased catecholamine level in TD-overexpressing potato resulted in enhanced pathogen resistance. Our data suggest that plant catecholamines are involved in plant responses towards biotic and abiotic stresses. It has to be pointed out that this is the first report proposing catecholamine as new stress agent compounds in plants.


Assuntos
Catecolaminas/biossíntese , Solanum tuberosum/fisiologia , Ácido Abscísico/farmacologia , Aclimatação , Temperatura Baixa , Dopamina/metabolismo , Norepinefrina/metabolismo , Normetanefrina/metabolismo , Petroselinum/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo , Amido/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA