Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 11(1): e0145157, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26784324

RESUMO

BACKGROUND: Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. METHODS: Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5-6 consecutive days, and ad libitum intake for 1-3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)-(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. RESULTS: Mice on the ID showed transient hyperphagia relative to controls during each 1-3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. CONCLUSION: Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.


Assuntos
Metabolismo Energético , Obesidade/metabolismo , Redução de Peso , Tecido Adiposo/metabolismo , Animais , Glicemia , Composição Corporal , Peso Corporal , Dieta/efeitos adversos , Ingestão de Energia , Jejum , Expressão Gênica , Gônadas/anatomia & histologia , Gônadas/metabolismo , Hipotálamo/metabolismo , Insulina/sangue , Resistência à Insulina , Masculino , Camundongos , Modelos Animais , Obesidade/etiologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
2.
PLoS One ; 4(12): e8415, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20027231

RESUMO

Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY), a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/-)) mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+) show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/-) mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.


Assuntos
Peso Corporal/fisiologia , Osso e Ossos/anatomia & histologia , Neuropeptídeo Y/deficiência , Adiposidade , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Feminino , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Neuropeptídeo Y/metabolismo , Tamanho do Órgão , Osteogênese , Fenótipo , Transdução de Sinais
3.
J Biol Chem ; 282(26): 19092-102, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17491016

RESUMO

The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.


Assuntos
Osso e Ossos/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Fatores Etários , Animais , Comportamento Animal/fisiologia , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Células Cultivadas , Feminino , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo , Células Estromais/metabolismo
4.
Endocrinology ; 147(11): 5094-101, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16873543

RESUMO

Neuropeptide Y (NPY) is a key regulator of energy homeostasis and is implicated in the development of obesity and type 2 diabetes. Whereas it is known that hypothalamic administration of exogenous NPY peptides leads to increased body weight gain, hyperphagia, and many hormonal and metabolic changes characteristic of an obesity syndrome, the Y receptor(s) mediating these effects is disputed and unclear. To investigate the role of different Y receptors in the NPY-induced obesity syndrome, we used recombinant adeno-associated viral vector to overexpress NPY in mice deficient of selective single or multiple Y receptors (including Y1, Y2, and Y4). Results from this study demonstrated that long-term hypothalamic overexpression of NPY lead to marked hyperphagia, hypogonadism, body weight gain, enhanced adipose tissue accumulation, hyperinsulinemia, and other hormonal changes characteristic of an obesity syndrome. NPY-induced hyperphagia, hypogonadism, and obesity syndrome persisted in all genotypes studied (Y1(-/-), Y2(-/-), Y2Y4(-/-), and Y1Y2Y4(-/-) mice). However, triple deletion of Y1, Y2, and Y4 receptors prevented NPY-induced hyperinsulinemia. These findings suggest that Y1, Y2, and Y4 receptors under this condition are not crucially involved in NPY's hyperphagic, hypogonadal, and obesogenic effects, but they are responsible for the central regulation of circulating insulin levels by NPY.


Assuntos
Hiperinsulinismo/prevenção & controle , Hiperfagia/etiologia , Hipotálamo/fisiologia , Neuropeptídeo Y/fisiologia , Obesidade/etiologia , Receptores de Neuropeptídeo Y/fisiologia , Tecido Adiposo/metabolismo , Animais , Glicemia/análise , Peso Corporal , Feminino , Humanos , Hiperinsulinismo/etiologia , Hiperfagia/sangue , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue
5.
Diabetes ; 55(1): 19-26, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16380472

RESUMO

Neuropeptide Y receptors are critical regulators of energy homeostasis, but the functional interactions and relative contributions of Y receptors and the environment in this process are unknown. We measured the effects of an ad libitum diet of normal or high-fat food on energy balance in mice with single, double, or triple deficiencies of Y1, Y2, or Y4 receptors. Whereas wild-type mice developed diet-induced obesity, Y2Y4 double knockouts did not. In contrast, Y1 knockout or Y1Y2 or Y1Y4 receptor double knockout mice developed an exacerbated diet-induced obesity syndrome. Remarkably, the antiobesity effect of Y2Y4 deficiency was stronger than the obesogenic effect of Y1 deficiency, since Y1Y2Y4 triple knockouts did not develop obesity on the high-fat diet. Resistance to diet-induced obesity in Y2Y4 knockouts was associated with reduced food intake and improved glucose tolerance in the absence of changes in total physical activity. Fecal concentration of free fatty acids was significantly increased in Y2Y4 knockouts in association with a significantly reduced bile acid pool and marked alterations in intestinal morphology. In addition, hypothalamic proopiomelanocortin expression was decreased in diet-induced obesity (in both wild-type and Y1 receptor knockout mice) but not in obesity-resistant Y2Y4 receptor knockout mice fed a high-fat diet. Therefore, deletion of Y2 and Y4 receptors synergistically protects against diet-induced obesity, at least partially via changes in food intake and hypothalamic proopiomelanocortin expression.


Assuntos
Gorduras na Dieta/farmacologia , Obesidade/genética , Obesidade/prevenção & controle , Receptores de Neuropeptídeo Y/deficiência , Receptores de Neuropeptídeo Y/metabolismo , Animais , Dieta , Comportamento Alimentar , Regulação da Expressão Gênica , Intolerância à Glucose , Hipotálamo/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/anatomia & histologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Receptores de Neuropeptídeo Y/genética , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA