Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Plant Physiol ; 189: 1-10, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26476701

RESUMO

In this work, we investigate the physiological responses to P deficiency (5µM KH2PO4=D), salt stress (400mM NaCl=C+S), and their combination (D+S) on the facultative halophyte Aeluropus littoralis to understand how plants adapt to these combined stresses. When individually applied, both P deficiency and salinity significantly restricted whole plant growth, with a more marked effect of the latter stress. However, the effects of the two stresses were not additive in plant biomass production since the response of plants to combined salinity and P deficiency was similar to that of plants grown under salt stress alone. In addition the observed features under salinity alone are kept when plants are simultaneously subjected to the combined effects of salinity and P deficiency such as biomass partitioning; the synthesis of proline and the K(+)/Na(+) selectivity ratio. Thus, increasing P availability under saline conditions has no significant effect on salt tolerance in this species. Plants cultivated under the combined effects of salinity and P deficiency exhibited the lowest leaf water potential. This trend was associated with a high accumulation of Na(+), Cl(-) and proline in shoots of salt treated plants suggesting the involvement of these solutes in osmotic adjustment. Proline could be involved in other physiological processes such as free radical scavenging. Furthermore, salinity has no significant effect on phosphorus acquisition when combined with a low P supply and it significantly decreased this parameter when combined with a sufficient P supply. This fact was probably due to salt's effect on P transporters. In addition, shoot soluble sugars accumulation under both P deficiency treatments with and without salt likely play an important role in the adaptation of A. littoralis plants to P shortage applied alone or combined with salinity. Moreover, there was a strong correlation between shoot and root intracellular acid phosphatase activity and phosphorus use efficiency which strengthens the assumption that intracellular acid phosphatase enzymes are involved in P remobilization in this species. Finally, our results showed that P availability has no significant effect on salt excretion in A. littorlais which suggests that independently of the P status in the plant, excretion remains priority over other functions requiring energy such as growth. This result could also indicate that salt excretion is not energy-dependent in this species.


Assuntos
Fósforo/deficiência , Poaceae/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Cloretos/metabolismo , Osmose , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Poaceae/efeitos dos fármacos , Potássio/metabolismo , Prolina/metabolismo , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal , Sódio/metabolismo , Água/fisiologia
2.
Chemosphere ; 67(1): 72-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17126878

RESUMO

One of the limits of Cd2+-phytoextraction is the high toxicity of this metal to plants. Growth restriction, chlorosis and necrosis are usually accompanied with a large disturbance of the uptake of essential elements. This work aims to study the effects of cadmium (Cd2+) on potassium (K+), calcium (Ca2+) and nitrogen (N) acquisition, and their consequences on growth in two halophytes species: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Seedlings were grown for 30 days in split-root conditions. One half of the root system was immersed in complete nutrient solution (Basal medium (B)) supplemented with 100 microM Cd2+, and the other half was immersed in a Cd2+-free medium, containing all nutrients (B/Cd plants) or deprived of potassium ((B-K)/Cd) or calcium ((B-Ca)/Cd) or nitrogen ((B-N)/Cd). Using this approach, we demonstrated that K+ and Ca2+ uptake was impaired in roots exposed to Cd2+. Concerning N, we noticed no indication of uptake inhibition by Cd2+. However, restriction of K+ uptake by roots was compensated by an increase in the K+-use efficiency, so that growth was not inhibited. Calcium uptake was strongly limited by Cd2. This inhibition was accompanied by a reduction in growth of ((B-Ca)/Cd) plants. Thus, we conclude that Cd2+ limits growth of both halophytes through restriction imposed on Ca2+ uptake. We suggest that the increase of Ca2+ availability in soils could improve the growth of both species in the presence of Cd2+. This would be essential for improving their utility for extraction of this metal by from salty contaminated soils.


Assuntos
Aizoaceae/efeitos dos fármacos , Aizoaceae/metabolismo , Cádmio/toxicidade , Cálcio/metabolismo , Mesembryanthemum/efeitos dos fármacos , Nitrogênio/metabolismo , Potássio/metabolismo , Aizoaceae/crescimento & desenvolvimento , Mesembryanthemum/crescimento & desenvolvimento , Mesembryanthemum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
3.
J Plant Physiol ; 162(10): 1133-40, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16255171

RESUMO

Growth, cadmium accumulation and potassium and calcium status were studied in two halophytes from Aizoaceae family: Sesuvium portulacastrum and Mesembryanthemum crystallinum. After multiplication, the seedlings were cultivated on nutrient solution supplemented with NaCl (100mM) and CdCl2 (0, 50, 100, 200 and 300 microM). After 1 month of treatment, plants were harvested and the dry weight, as well as the Cd, K and Ca concentrations in tissues were determined. Results showed that S. portulacastrum, a perennial halophyte with slow growth, is significantly more tolerant to Cd than M. crystallinum, an annual plant. Cd severely inhibited Mesembryanthemum growth even at the lowest Cd concentration in culture medium (50 microM), and did not modify significantly that of Sesuvium. For both halophytes, Cd accumulation was significantly higher in the roots than in the shoots. However, Cd concentration reached 350-700 microg g(-1) DM in the shoots, values characteristic of Cd hyperaccumulator plants. The addition of Cd in the culture medium led to a disturbance of Ca and especially K nutrition, suggesting the possibility to improve plant growth and Cd phytoextraction of both halophytes by increasing nutrient availability in the culture medium.


Assuntos
Aizoaceae/efeitos dos fármacos , Cloreto de Cádmio/farmacologia , Mesembryanthemum/efeitos dos fármacos , Aizoaceae/crescimento & desenvolvimento , Aizoaceae/metabolismo , Meios de Cultura , Mesembryanthemum/crescimento & desenvolvimento , Mesembryanthemum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA