RESUMO
Proliferating cells have an absolute requirement for iron, which is delivered by transferrin with subsequent intracellular transport via the transferrin receptor. Recent studies have reported that transferrin plays a crucial role in the local regulation of ovarian function, apart from its iron-binding characteristic. Therefore, the present study was undertaken to explore the possible role of transferrin in porcine granulosa cells function by examining its influence on aromatase activity, the most important indicator of follicular cell differentiation. In the first series of studies, pig granulosa cells isolated from small, immature follicles were cultured in the presence of transferrin alone (10 microg/ml or 100 microg/ml) or with the addition of FSH (100ng/ml). The second series of studies was undertaken to determine transferrin-stimulated granulosa cells ability to aromatize exogenous testosterone (1x10(-7)M). One hour after the establishment of cultures an aromatase inhibitor CGS16949A was added to test its influence on estradiol production. After 48 hours, cultures were terminated and cells were processed for immunocytochemical staining of aromatase. Media were frozen for further estradiol level analysis. Positive immunostaining for aromatase was found in all granulosa cell cultures. The intensity of immunostaining was always stronger in cultures supplemented with FSH whereas the addition of transferrin had no effect. Granulosa cells in vitro synthesized the highest amount of estradiol after the addition of FSH and exogenous testosterone as measured radioimmunologically. Concomitant treatment with FSH and transferrin caused an inhibition of FSH-stimulated aromatase activity. The production of estradiol also declined in the presence of FSH, testosterone and transferrin. This study demonstrates that transferrin had a dose-dependent inhibitory effect on FSH-stimulated aromatase activity, which was confirmed by radioimmunoassay. Our results indicate that transferrin may be an important factor in the regulation of granulosa cell diferentiation.
Assuntos
Aromatase/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/enzimologia , Transferrina/farmacologia , Animais , Separação Celular , Estradiol/metabolismo , Feminino , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Imuno-Histoquímica , Sus scrofaRESUMO
Phytoestrogens are polyphenolic compounds that occur ubiquitously in food of plant origin and they have a variety of biological effects in numerous animal cell systems in vivo as well in vitro. Results of studies conducted on animals have shown that effects of phytoestrogens vary depending on species, sex, routes of administration, dose and exposure time. This review summarizes the results of ours studies concerning: 1/ molecular mechanism of phytoestrogen action in porcine granulosa cells, 2/ the involvement of phytoestrogens in immunological regulations of bovine corpus luteum function during luteolysis, 3/ genistein action on metabotropic hormones and lipid-carbohydrate metabolism in rats during pregnancy, 4/ the effects of phytoestrogens on reproductive processes in males of bilgoraj goose.
Assuntos
Aves/fisiologia , Mamíferos/fisiologia , Fitoestrógenos/farmacologia , Reprodução/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Corpo Lúteo/efeitos dos fármacos , Feminino , Genisteína/farmacologia , Células da Granulosa/efeitos dos fármacos , Hormônios , Metabolismo dos Lipídeos/efeitos dos fármacos , Luteólise/efeitos dos fármacos , Masculino , GravidezRESUMO
In the present study the authors investigated whether androgens could interact with FSH to induce aromatase and androgen receptor expression in porcine granulosa cells. Dissected whole porcine follicles (small, medium, and large) were incubated for 8 hours in M199 medium supplemented with testosterone (10(-7) M), FSH (100 ng/ml) or both those hormones. After incubation, the follicles were fixed and immunostained to visualise androgen receptor and aromatase. In cultures of granulosa cells isolated from small and large follicles, oestrogen secretion was measured by appropriate RIA. Incubation of follicles with testosterone and FSH increased aromatase immunoreactivity in preantral and early antral (i.e. small) follicles. The immunostaining for androgen receptor was slightly higher in medium follicles, while such hormonal stimulation had no effect on small and large follicles. Moreover, granulosa cells isolated from small follicles cultured with both testosterone and FSH produced more estradiol than control cultures (40 pg vs. 100 pg/10(5) cells). The level was relatively close to that obtained in the culture of control granulosa cells isolated from large preovulatory follicles (105 pg/10(5) cells). These results indicate that testosterone acts synergistically with FSH to increase aromatase expression in the small porcine follicles.