Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Nutr ESPEN ; 60: 223-233, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479914

RESUMO

BACKGROUND & AIMS: Inflammation is necessary for a healthy pregnancy. However, unregulated or excessive inflammation during pregnancy is associated with severe maternal and infant morbidities, such as pre-eclampsia, abnormal infant neurodevelopment, or preterm birth. Inflammation is regulated in part by the bioactive metabolites of omega-6 (n-6) and omega-3 (n-3) fatty acids (FAs). N-6 FAs have been shown to promote pro-inflammatory cytokine environments in adults, while n-3 FAs have been shown to contribute to the resolution of inflammation; however, how these metabolites affect maternal and infant inflammation is still uncertain. The objective of this study was to predict the influence of n-6 and n-3 FA metabolites on inflammatory biomarkers in maternal and umbilical cord plasma at the time of delivery. METHODS: Inflammatory biomarkers (IL-1ß, IL-2, IL-6, IL-8, IL-10, and TNFα) for maternal and umbilical cord plasma samples in 39 maternal-infant dyads were analyzed via multi-analyte bead array. Metabolites of n-6 FAs (arachidonic acid and linoleic acid) and n-3 FAs (eicosapentaenoic acid and docosahexaenoic acid) were assayed via liquid chromatography-mass spectrometry. Linear regression models assessed relationships between maternal and infant inflammatory markers and metabolite plasma concentrations. RESULTS: Increased plasma concentrations of maternal n-6 metabolites were predictive of elevated pro-inflammatory cytokine concentrations in mothers; similarly, higher plasma concentrations of umbilical cord n-6 FA metabolites were predictive of elevated pro-inflammatory cytokine concentrations in infants. Higher plasma concentrations of maternal n-6 FA metabolites were also predictive of elevated pro-inflammatory cytokines in infants, suggesting that maternal n-6 FA status has an intergenerational impact on the inflammatory status of the infant. In contrast, maternal and cord plasma concentrations of n-3 FA metabolites had a mixed effect on inflammatory status in mothers and infants, which may be due to the inadequate maternal dietary intake of n-3 FAs in our study population. CONCLUSIONS: Our results reveal that maternal FA status may have an intergenerational impact on the inflammatory status of the infant. Additional research is needed to identify how dietary interventions that modify maternal FA intake prior to or during pregnancy may impact maternal and infant inflammatory status and associated long-term health outcomes.


Assuntos
Ácidos Graxos Ômega-3 , Nascimento Prematuro , Lactente , Gravidez , Adulto , Feminino , Recém-Nascido , Humanos , Citocinas , Ácidos Graxos Ômega-6 , Inflamação , Biomarcadores
2.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054892

RESUMO

Omega-3 and omega-6 fatty acids are important for neonatal development and health. One mechanism by which omega-3 and omega-6 fatty acids exert their effects is through their metabolism into oxylipins and specialized pro-resolving mediators. However, the influence of oxylipins on fetal growth is not well understood. Therefore, the objective of this study was to identify oxylipins present in maternal and umbilical cord plasma and investigate their relationship with infant growth. Liquid chromatography-tandem mass spectrometry was used to quantify oxylipin levels in plasma collected at the time of delivery. Spearman's correlations highlighted significant correlations between metabolite levels and infant growth. They were then adjusted for maternal obesity (normal body mass index (BMI: ≤30 kg/m2) vs. obese BMI (>30 kg/m2) and smoking status (never vs. current/former smoker) using linear regression modeling. A p-value < 0.05 was considered statistically significant. Our study demonstrated a diverse panel of oxylipins from the lipoxygenase pathway present at the time of delivery. In addition, both omega-3 and omega-6 oxylipins demonstrated potential influences on the birth length and weight percentiles. The oxylipins present during pregnancy may influence fetal growth and development, suggesting potential metabolites to be used as biomarkers for infant outcomes.


Assuntos
Lipoxigenases/metabolismo , Obesidade/metabolismo , Oxilipinas/sangue , Cordão Umbilical/metabolismo , Adulto , Cromatografia Líquida , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Recém-Nascido , Obesidade/sangue , Oxilipinas/análise , Oxilipinas/metabolismo , Gravidez , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA