RESUMO
Importance: Wrist-worn activity monitors provide biomarkers of health by non-obtrusively measuring the timing and amount of rest and physical activity (rest-activity rhythms, RARs). The morphology and robustness of RARs vary by age, gender, and sociodemographic factors, and are perturbed in various chronic illnesses. However, these are cross-sectionally derived associations from recordings lasting 4-10 days, providing little insights into how RARs vary with time. Objective: To describe how RAR parameters can vary or evolve with time (~months). Design Setting and Participants: 48 very long actograms ("VLAs", ≥90 days in duration) were identified from subjects enrolled in the STAGES (Stanford Technology, Analytics and Genomics in Sleep) study, a prospective cross-sectional, multi-site assessment of individuals > 13 years of age that required diagnostic polysomnography to address a sleep complaint. A single 3-year long VLA (author GD) is also described. Exposures/Intervention: None planned. Main Outcomes and Measures: For each VLA, we assessed the following parameters in 14-day windows: circadian/ultradian spectrum, pseudo-F statistic ("F"), cosinor amplitude, intradaily variability, interdaily stability, acrophase and estimates of "sleep" and non-wearing. Results: Included STAGES subjects (n = 48, 30 female) had a median age of 51, BMI of 29.4kg/m2, Epworth Sleepiness Scale score (ESS) of 10/24 and a median recording duration of 120 days. We observed marked within-subject undulations in all six RAR parameters, with many subjects displaying ultradian rhythms of activity that waxed and waned in intensity. When appraised at the group level (nomothetic), averaged RAR parameters remained remarkably stable over a ~4 month recording period. Cohort-level deficits in average RAR robustness associated with unemployment or high BMI (>29.4) also remained stable over time. Conclusions and Relevance: Through an exemplary set of months-long wrist actigraphy recordings, this study quantitatively depicts the longitudinal stability and dynamic range of human rest-activity rhythms. We propose that continuous and long-term actigraphy may have broad potential as a holistic, transdiagnostic and ecologically valid monitoring biomarker of changes in chronobiological health. Prospective recordings from willing subjects will be necessary to precisely define contexts of use.
RESUMO
Mood symptoms and disorders are common in dementia caregivers, who can be exposed to a myriad of potential stressors including their care recipient's neuropsychiatric symptoms. Existing evidence indicates that the effects of potentially stressful exposures on mental health depend on the caregiver's individual characteristics and responses. Specifically, prior studies indicate that risk factors measured on psychological (e.g., emotion-focused/behaviorally disengaged coping responses) and behavioral (e.g., sleep and activity restriction) levels of analysis may confer the effects of caregiving exposures on mental health. Theoretically, this process from caregiving stressors and other risk factors to mood symptoms is neurobiologically mediated. This article reviews recent studies that used brain imaging to identify neurobiological factors that are related to psychological outcomes in caregivers. Available observational data indicate that psychological outcomes in caregivers are related to differences in the structure/function of regions involved in socio-affective information processing (prefrontal), autobiographical memory (the posterior cingulate), and stress (amygdala). In addition, two small randomized controlled trials using repeated brain imaging showed that Mentalizing Imagery Therapy (a mindfulness program) increased prefrontal network connectivity and reduced mood symptoms. These studies raise the possibility that, in the future, brain imaging may be useful to detect the neurobiological basis of a given caregiver's mood vulnerability and guide the selection of interventions that are known to modify it. However, there remains a need for evidence on whether brain imaging improves on simpler/inexpensive measurement modalities like self-report for identifying vulnerable caregivers and matching them with efficacious interventions. In addition, to target interventions, more evidence is needed regarding the effects that both risk factors and interventions have on mood neurobiology (e.g., how persistent emotion-focused coping, sleep disruption, and mindfulness affect brain function).
Assuntos
Cuidadores , Demência , Humanos , Cuidadores/psicologia , Neurobiologia , Adaptação Psicológica , Saúde Mental , Demência/psicologia , Estresse Psicológico/psicologiaRESUMO
Identifying objectively measurable seasonal changes in 24-h activity patterns (rest-activity rhythms or RARs) that occur in seasonal affective disorder (SAD) could help guide research and practice towards new monitoring tools or prevention targets. We quantified RARs from actigraphy data using non-parametric and extended cosine based approaches, then compared RARs between people with SAD and healthy controls in the summer (n = 70) and winter seasons (n = 84). We also characterized the within-person seasonal RAR changes that occurred in the SAD (n = 19) and control (n = 26) participants who contributed repeated measures. Only controls had significant winter increases in RAR fragmentation (intra-daily variability; in controls mean winter-summer changes (log scale) = 0.05, 0.21 standard deviation, p = 0.03). In SAD participants only, estimated evening settling times (down-mesor) were an average of 30 min earlier in the winter compared with the summer (1-h standard deviation, p = 0.045). These RAR characteristics correlated with greater fatigue (Spearman r = 0.36) but not depression symptom severity. Additional research is needed to ascertain why healthy controls, but not people with SAD, appear to have increased RAR fragmentation in the winter. People with SAD lacked this increase in RAR fragmentation, and instead had earlier evening setting in the winter. Prospective and intervention studies with greater temporal resolution are warranted to ascertain how these seasonal behavioral differences relate to fatigue pathophysiology in SAD. Future research is needed to determine whether extending the winter active period, even in relatively fragmented bouts, could help reduce the fatigue symptoms common in SAD.