Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 378(6620): eade2277, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356147

RESUMO

Huisman et al. claim that our model is poorly supported or contradicted by other studies and the predictions are "seriously flawed." We show their criticism is based on an incomplete selection of evidence, misinterpretation of data, or does not actually refute the model. Like all ecosystem models, our model has simplifications and uncertainties, but it is better than existing approaches hat ignore biology and do not predict toxin concentration.


Assuntos
Toxinas Bacterianas , Lagos , Microcystis , Fósforo , Ecossistema , Lagos/química , Lagos/microbiologia , Fósforo/deficiência , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Microcystis/metabolismo
2.
Science ; 376(6596): 1001-1005, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617400

RESUMO

Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.


Assuntos
Lagos , Microcistinas , Microcystis , Fósforo , Canadá , Água Potável , Lagos/química , Lagos/microbiologia , Microcistinas/análise , Microcistinas/metabolismo , Microcistinas/toxicidade , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Estados Unidos , Abastecimento de Água
3.
Nature ; 557(7705): 418-423, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743673

RESUMO

Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.


Assuntos
Evolução Molecular , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B/virologia , Filogenia , África , Animais , Ásia , Europa (Continente) , Genótipo , Vírus da Hepatite B/classificação , História Antiga , História Medieval , Hominidae/virologia , Migração Humana/história , Humanos , Recombinação Genética
4.
Neonatology ; 96(1): 23-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19204407

RESUMO

BACKGROUND: Magnesium sulfate (MgSO4) is often used as a treatment for pre-eclampsia/eclampsia and preterm labor, resulting in the exposure of a significant number of neonates to this drug despite a lack of evidence suggesting that it is safe, or effective as a tocolytic. While there is evidence that MgSO4 may be neuroprotective in perinatal brain injury, recent reviews have suggested that the effects are dependent upon dose, and that higher doses may actually increase neonatal morbidity and mortality. There is a lack of evidence investigating the neurotoxic effects of neonatal magnesium (Mg) exposure on the developing brain, specifically in terms of neurodevelopmental apoptosis, a cell-killing phenomenon known to be potentiated by other drugs with mechanisms of action at Mg-binding sites (i.e. NMDA receptor antagonists such as MK-801, ketamine, and PCP). OBJECTIVE: To investigate the effects of Mg exposure on the neonatal mouse brain at different postnatal ages to determine whether MgSO4 treatment causes significant cell death in the developing mouse brain. METHODS: C57Bl/6 mice were treated with four doses of MgSO4 (250 mg/kg) on postnatal days 3 (P3), 7 (P7) or 14 (P14). Caspase-3 immunohistochemistry, cupric silver staining, and electron microscopy techniques were used to examine Mg-treated brains for neurotoxic effects. RESULTS: Qualitative evaluation using cupric silver staining revealed widespread damage throughout the brain in P7 animals. Results of electron microscopy confirmed that the cell death process was apoptotic in nature. Quantitative evaluation of damage to the cortex, caudate-putamen, hippocampus, thalamus, and cerebellum showed that Mg treatment caused significant brain damage in animals treated on P3 and P7, but not P14. CONCLUSIONS: Administration of high doses of Mg may be detrimental to the fetal brain, particularly if exposure occurs during critical periods of neurodevelopment.


Assuntos
Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Sulfato de Magnésio/toxicidade , Envelhecimento , Animais , Encéfalo/citologia , Caspase 3/análise , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Cobre , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Sulfato de Magnésio/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/ultraestrutura , Prata , Coloração e Rotulagem , Tálamo/citologia , Tálamo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA