Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Rhinol Allergy ; 37(4): 419-428, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36847244

RESUMO

BACKGROUND: Previous research has shown diminished nasal immune function following nasal saline irrigation (NSI), returning to baseline at 6 hours. The aim of this study was to examine the immune nasal proteome before and after 14 days of nasal irrigation. METHODS: Seventeen healthy volunteers received either isotonic (IsoSal) or low salt (LowNa) NSI. Nasal secretions were collected before and 30 min after NSI at baseline and again after 14 days. Specimens were analyzed using mass spectrometry to detect proteins of relevance to nasal immune function. RESULTS: One thousand eight hundred and sixty-five proteins were identified with significant changes in 71 proteins, of which 23 were identified as part of the innate immune system. Baseline analysis demonstrated an increase of 9 innate proteins after NSI, most after IsoSal. After 14 days, a greater increase in innate peptides was present, with most now in the LowNa group. When NSI solutions were compared, a significant increase in 4 innate proteins, including a 211% in lysozyme, was detected in the LowNa group. CONCLUSION: LowNa NSI demonstrates evidence of improving the innate immune secretions, especially lysozyme, in healthy volunteers.


Assuntos
Rinite , Sinusite , Humanos , Proteoma , Muramidase , Projetos Piloto , Solução Salina , Lavagem Nasal/métodos , Imunidade Inata , Irrigação Terapêutica/métodos
2.
Mar Drugs ; 19(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202500

RESUMO

An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new N-methyladenine-containing diterpenoids, agelasines W-Y (1-3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known ageliferin derivatives (5-10). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory activities, ageliferins (4-10) were the most potent metabolites, with IC50 values that ranged from 18 to 35 µM.


Assuntos
Diterpenos/farmacologia , Imidazóis/metabolismo , Poríferos , Pirróis/metabolismo , Animais , Organismos Aquáticos , Diterpenos/química , Humanos , Estrutura Molecular , Fitoterapia , Tonga
3.
Plant Methods ; 14: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849743

RESUMO

BACKGROUND: Reverse genetic strategies, such as virus-induced gene silencing, are powerful techniques to study gene function. Currently, there are few tools to study the spatial dependence of the consequences of gene silencing at the cellular level. RESULTS: We report the use of multimodal Raman and mass spectrometry imaging to study the cellular-level biochemical changes that occur from silencing the phytoene desaturase (pds) gene using a Foxtail mosaic virus (FoMV) vector in maize leaves. The multimodal imaging method allows the localized carotenoid distribution to be measured and reveals differences lost in the spatial average when analyzing a carotenoid extraction of the whole leaf. The nature of the Raman and mass spectrometry signals are complementary: silencing pds reduces the downstream carotenoid Raman signal and increases the phytoene mass spectrometry signal. CONCLUSIONS: Both Raman and mass spectrometry imaging show that the biochemical changes from FoMV-pds silencing occur with a mosaic spatial pattern at the cellular level, and the Raman images show carotenoid expression was reduced at discrete locations but not eliminated. The data indicate the multimodal imaging method has great utility to study the biochemical changes that result from gene silencing at the cellular spatial level of expression in many plant tissues including the stem and leaf. Our demonstrated method is the first to spatially characterize the biochemical changes as a result of VIGS at the cellular level using commonly available instrumentation.

4.
Assay Drug Dev Technol ; 8(3): 286-94, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20578927

RESUMO

High-throughput siRNA screens are now widely used for identifying novel drug targets and mapping disease pathways. Despite their popularity, there remain challenges related to data variability, primarily due to measurement errors, biological variance, uneven transfection efficiency, the efficacy of siRNA sequences, or off-target effects, and consequent high false discovery rates. Data variability can be reduced if siRNA screens are performed in replicate. Running a large-scale siRNA screen in replicate is difficult, however, because of the technical challenges related to automating complicated steps of siRNA transfection, often with multiplexed assay readouts, and controlling environmental humidity during long incubation periods. Small-molecule screens have greatly benefited in the past decade from assay miniaturization to high-density plates such that 1,536-well nanoplate screenings are now a routine process, allowing fast, efficient, and affordable operations without compromising underlying biology or important assay characteristics. Here, we describe the development of a 1,536-well nanoplate siRNA transfection protocol that utilizes the instruments commonly found in small-molecule high throughput screening laboratories. This protocol was then successfully demonstrated in a triplicate large-scale siRNA screen for the identification of regulators of the Wnt/beta-catenin pathway.


Assuntos
Avaliação Pré-Clínica de Medicamentos/instrumentação , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Algoritmos , Animais , Células Cultivadas , Interpretação Estatística de Dados , Biblioteca Gênica , Humanos , Miniaturização , RNA Interferente Pequeno/uso terapêutico , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transfecção , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/genética
5.
Cancer Res ; 68(19): 8031-8, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829561

RESUMO

Vitamin C is an antioxidant vitamin that has been hypothesized to antagonize the effects of reactive oxygen species-generating antineoplastic drugs. The therapeutic efficacy of the widely used antineoplastic drugs doxorubicin, cisplatin, vincristine, methotrexate, and imatinib were compared in leukemia (K562) and lymphoma (RL) cell lines with and without pretreatment with dehydroascorbic acid, the commonly transported form of vitamin C. The effect of vitamin C on viability, clonogenicity, apoptosis, P-glycoprotein, reactive oxygen species (ROS), and mitochondrial membrane potential was determined. Pretreatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by trypan blue exclusion and colony formation after treatment with all antineoplastic agents tested. Vitamin C given before doxorubicin treatment led to a substantial reduction of therapeutic efficacy in mice with RL cell-derived xenogeneic tumors. Vitamin C treatment led to a dose-dependent decrease in apoptosis in cells treated with the antineoplastic agents that was not due to up-regulation of P-glycoprotein or vitamin C retention modulated by antineoplastics. Vitamin C had only modest effects on intracellular ROS and a more general cytoprotective profile than N-acetylcysteine, suggesting a mechanism of action that is not mediated by ROS. All antineoplastic agents tested caused mitochondrial membrane depolarization that was inhibited by vitamin C. These findings indicate that vitamin C given before mechanistically dissimilar antineoplastic agents antagonizes therapeutic efficacy in a model of human hematopoietic cancers by preserving mitochondrial membrane potential. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.


Assuntos
Antineoplásicos/antagonistas & inibidores , Ácido Ascórbico/farmacologia , Neoplasias/patologia , Animais , Antineoplásicos/uso terapêutico , Ácido Ascórbico/metabolismo , Citoproteção/efeitos dos fármacos , Ácido Desidroascórbico/farmacocinética , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 12(3 Pt 1): 924-32, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16467107

RESUMO

PURPOSE: Methotrexate is known to synergize with cytarabine [1-beta-D-arabinofuranosylcytosine (ara-C)] in a schedule-dependent manner. The purpose of this article is to compare and contrast the activity of pralatrexate (10-propargyl-10-deazaminopterin)/gemcitabine to the standard combination of methotrexate/ara-C and to determine if schedule dependency of this combination is important in lymphoma. EXPERIMENT DESIGN: Cytotoxicity assays using the standard trypan blue exclusion assay were used to explore the in vitro activity of pralatrexate and gemcitabine against a panel of lymphoma cell lines. Both severe combined imunodeficient beige and irradiated nonobese diabetic/severe combined imunodeficient mouse xenograft models were used to compare and contrast the in vivo activity of these combinations as a function of schedule. In addition, apoptosis assays were conducted. RESULTS: Compared with methotrexate-containing combinations, pralatrexate plus gemcitabine combinations displayed improved therapeutic activity with some schedule dependency. The combination of pralatrexate and gemcitabine was superior to any methotrexate and ara-C combination in inducing apoptosis and in activating caspase-3. In vivo, the best therapeutic effects were obtained with the sequence of pralatrexate --> gemcitabine. Complete remissions were only appreciated in animals receiving pralatrexate followed by gemcitabine. CONCLUSIONS: These data show that the combination of pralatrexate followed by gemcitabine was superior to methotrexate/ara-C in vitro and in vivo, and was far more potent in inducing apoptosis in a large B-cell lymphoma. These data provide strong rationale for further study of this combination in lymphomas where methotrexate and ara-C are used.


Assuntos
Aminopterina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Citarabina/administração & dosagem , Desoxicitidina/análogos & derivados , Linfoma não Hodgkin/tratamento farmacológico , Metotrexato/administração & dosagem , Aminopterina/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Citarabina/farmacologia , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Humanos , Técnicas In Vitro , Metotrexato/farmacologia , Camundongos , Camundongos SCID , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA