Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 29: 32-39, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36936447

RESUMO

Crigler-Najjar syndrome is a rare disorder of bilirubin metabolism caused by uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) mutations characterized by hyperbilirubinemia and jaundice. No cure currently exists; treatment options are limited to phototherapy, whose effectiveness diminishes over time, and liver transplantation. Here, we evaluated the therapeutic potential of systemically administered, lipid nanoparticle-encapsulated human UGT1A1 (hUGT1A1) mRNA therapy in a Crigler-Najjar mouse model. Ugt1 knockout mice were rescued from lethal post-natal hyperbilirubinemia by phototherapy. These adult Ugt1 knockout mice were then administered a single lipid nanoparticle-encapsulated hUGT1A1 mRNA dose. Within 24 h, serum total bilirubin levels decreased from 15 mg/dL (256 µmol/L) to <0.5 mg/dL (9 µmol/L), i.e., slightly above wild-type levels. This reduction was sustained for 2 weeks before bilirubin levels rose and returned to pre-treatment levels by day 42 post-administration. Sustained reductions in total bilirubin levels were achieved by repeated administration of the mRNA product in a frequency-dependent manner. We were also able to rescue the neonatal lethality phenotype seen in Ugt1 knockout mice with a single lipid nanoparticle dose, which suggests that this may be a treatment modality appropriate for metabolic crisis situations. Therefore, lipid nanoparticle-encapsulated hUGT1A1 mRNA may represent a potential treatment for Crigler-Najjar syndrome.

2.
Mol Genet Metab ; 134(1-2): 139-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34454844

RESUMO

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder characterized by a dysfunctional mitochondrial enzyme complex, branched-chain alpha-keto acid dehydrogenase (BCKDH), which catabolizes branched-chain amino acids (BCAAs). Without functional BCKDH, BCAAs and their neurotoxic alpha-keto intermediates can accumulate in the blood and tissues. MSUD is currently incurable and treatment is limited to dietary restriction or liver transplantation, meaning there is a great need to develop new treatments for MSUD. We evaluated potential gene therapy applications for MSUD in the intermediate MSUD (iMSUD) mouse model, which harbors a mutation in the dihydrolipoamide branched-chain transacylase E2 (DBT) subunit of BCKDH. Systemic delivery of an adeno-associated virus (AAV) vector expressing DBT under control of the liver-specific TBG promoter to the liver did not sufficiently ameliorate all aspects of the disease phenotype. These findings necessitated an alternative therapeutic strategy. Muscle makes a larger contribution to BCAA metabolism than liver in humans, but a muscle-specific approach involving a muscle-specific promoter for DBT expression delivered via intramuscular (IM) administration only partially rescued the MSUD phenotype in mice. Combining the muscle-tropic AAV9 capsid with the ubiquitous CB7 promoter via IM or IV injection, however, substantially increased survival across all assessed doses. Additionally, near-normal serum BCAA levels were achieved and maintained in the mid- and high-dose cohorts throughout the study; this approach also protected these mice from a lethal high-protein diet challenge. Therefore, administration of a gene therapy vector that expresses in both muscle and liver may represent a viable approach to treating patients with MSUD.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/terapia , Fenótipo , Administração Intravenosa , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Mutação
3.
Hum Gene Ther Clin Dev ; 30(1): 29-39, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30693797

RESUMO

Wilson disease (WD), an autosomal recessive disease caused by mutations in a copper-transporting P-type ATPase (Atp7b), causes severe liver damage. This disease is currently treated with the lifelong use of copper chelation therapy, which has side effects and does not fix copper metabolism. Here, we thoroughly characterized a mouse model of WD, the toxic milk mouse, and used the model to test a gene therapy approach for treating WD. WD mice accumulated copper in the liver from birth; severe copper accumulation and concurrent liver disease were evident by 2 months of age. Intravenously administering an adeno-associated viral (AAV) 8 vector expressing a codon-optimized version of the human ATP7B transgene into 2-month-old WD mice significantly decreased liver copper levels compared with age-matched, uninjected, WD mice. We also observed a significant dose-dependent decrease in liver disease. Male mice injected with 1011 genome copies of AAV8 vector showed only mild histopathological findings with a complete lack of liver fibrosis. Therefore, we conclude that administering gene therapy at the early stages of disease onset is a promising approach for reducing liver damage and correcting copper metabolism in WD.


Assuntos
ATPases Transportadoras de Cobre/genética , Cobre/metabolismo , Terapia Genética , Degeneração Hepatolenticular/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA