Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Bioresour Technol ; 393: 130078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993072

RESUMO

The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.


Assuntos
Petróleo , Poli-Hidroxialcanoatos , Plásticos , Biomassa
2.
Environ Microbiol Rep ; 13(4): 470-481, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33399261

RESUMO

This work aimed at studying the unconfirmed hypothesis predicting the existence of a connection between coffee farm microbiome and the resulting spontaneous fermentation process. Using Illumina-based amplicon sequencing, 360 prokaryotes and 397 eukaryotes were identified from coffee fruits and leaves, over-ripe fruits, water used for coffee de-pulping, depulped coffee beans, soil, and temporal fermentation samples at an experimental farm in Honduras. Coffee fruits and leaves were mainly associated with high incidence of Enterobacteriaceae, Pseudomonas, Colletotrichum, and Cladosporium. The proportion of Enterobacteriaceae was increased when leaves and fruits were collected on the ground compared to those from the coffee tree. Coffee farm soil showed the richest microbial diversity with marked presence of Bacillus. Following the fermentation process, microorganisms present in depulped coffee beans (Leuconostoc, Gluconobater, Pichia, Hanseniaspora, and Candida) represented more than 90% of the total microbial community, which produced lactic acid, ethanol, and several volatile compounds. The community ecology connections described in this study showed that coffee fruit provides beneficial microorganisms for the fermentation process. Enterobacteria, Colletotrichum, and other microbial groups present in leaves, fruit surface, over-ripe fruits, and soil may transfer unwanted aromas to coffee beans, so they should be avoided from having access to the fermentation tank.


Assuntos
Café , Microbiota , Bactérias/genética , Café/microbiologia , Fermentação , Frutas/microbiologia
3.
Int J Biol Macromol ; 167: 1499-1507, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33212110

RESUMO

Lignin was extracted from oil palm empty fruit bunches under four different conditions. The lignin samples were characterized and employed in the green synthesis of silver nanoparticles. Two-dimensional HSQC NMR analysis showed that lignins extracted under more aggressive conditions (3.5% acid, 60 min) exhibited less signals and thus, presented a more degraded chemical structure. Additionally, those lignins obtained under harsh conditions (3.5% acid, 60 min) exhibited higher antioxidant capacity than those obtained under mild conditions (1.5% acid, 20 min). Formation of lignin-mediated silver nanoparticles was confirmed by color change during their synthesis. The surface plasmon resonance peaks (423-427 nm) in UV-visible spectra also confirmed the synthesis of AgNPs. AgNPs showed spherical shape, polycrystalline nature and average size between 18 and 20 nm. AgNPs, in suspension, presented a negative Zeta potential profile. Lignin was assumed to contribute in the antioxidant capacity exhibited by AgNPs. All AgNPs presented no significant differences on the disk diffusion antimicrobial susceptibility test against E. coli. The minimum inhibitory concentration of HAL3-L AgNPs (62.5 µg·mL-1) was better than other physicochemically produced AgNPs (100 µg·mL-1).


Assuntos
Antibacterianos/química , Antioxidantes/química , Química Verde/métodos , Lignina/química , Lignina/isolamento & purificação , Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Frutas/química , Química Verde/instrumentação , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Óleo de Palmeira , Phoeniceae/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
4.
Bioresour Technol ; 320(Pt A): 124212, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33157450

RESUMO

Pentose-rich hydrolysate obtained from dilute acid pretreatment of oil palm empty fruit bunches was successfully consumed by pentose-consuming yeasts: Cyberlindnera jadinii (Cj) and Pichia jadinii (Pj). Nitrogen supplementation and no additional detoxification step were required. Pj produced 5.87 g/L of biomass using a C/N ratio of 14 after 120 h of fermentation, with xylose consumption of 71%. Cj produced 10.50 g/L of biomass after 96 h of fermentation with C/N ratio of 11.5, with maximum xylose consumption of 85%. ß-glucans, high value-added macromolecules, were further extracted from the yeast biomass, achieving yields of 3.1 and 3.0% from Pj and Cj, respectively. The isolated polysaccharides showed a chemical structure of ß-(1,3)-glucan with residues of other molecules. Additionally, ß-(1,6) branches seems to have been broken during isolation process. Further studies assessing ß-glucans production at industrial scale should be carried out looking for nitrogen sources and optimizing the ß-glucan isolation method.


Assuntos
Candida , beta-Glucanas , Biomassa , Fermentação , Frutas , Óleo de Palmeira , Pentoses
5.
Braz. arch. biol. technol ; 64(spe): e21200658, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285569

RESUMO

Abstract Food supplements have been increasingly investigated. Probiotics have several benefits for human and animal health and selenium (Se) is widely recommended against oxidative stress. In this context, the aim of this study was to develop a low-cost bioprocess to produce a functional food product comprising both probiotic and Se accumulation. Yeast cells of Saccharomyces boulardii CCT 4308 were cultivated using sugarcane molasses as substrate. Optimization studies were performed to evaluate the best medium composition for biomass production and Se-accumulation in batch and fed-batch systems. Optimized conditions were defined with a medium composed of 150 g L-1 sugarcane molasses and 12 g L-1 yeast extract, with feeding of 100 g L-1 sugarcane molasses and 100 μg mL-1 of Se incorporation after 4 h and 10 h of fermentation, respectively, during 48 h in STR (stirred tank reactor). Best biomass production reached 14.52 g L-1 with 3.20 mg Se g-1 biomass at 12 h. Process optimization led to 4.82-fold increase in biomass production compared to initial condition. A final Se-enriched S. boulardii CCT 4308 biomass was obtained, which is comparable to commercial products. An alternative probiotic yeast biomass was efficiently produced as a new food-form of Se supplement in a sustainable process using an inexpensive agro-industrial residue.


Assuntos
Selênio , Melaço , Biomassa , Probióticos , Saccharomyces boulardii
6.
J Biotechnol ; 323: 17-23, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569792

RESUMO

Palm oil mill effluent (POME) was tested as a substrate to produce hydrogen by dark fermentation. Two microbial consortia and a pure culture of Clostridium beijerinckii (ATCC 8260) were cultured anaerobically in raw, diluted and hydrolyzed POME to compare biohydrogen production yields in all three media. Experiments were done in 15 mL Hungate tubes containing 5 mL of medium and 1 mL of inoculum. When Clostridium beijerinckii was cultivated at 30 °C in the hydrolyzed POME (P003), containing 7.5 g/L of sucrose, during 8 days of fermentation and 20 % of the inoculum, the maximum biohydrogen production yield was 4.62 LH2/Lmed. Consortium C3 also showed the best production in hydrolyzed POME while consortium C6 achieved its maximum production in raw POME. This effluent is a potential substrate for biohydrogen production.


Assuntos
Clostridium beijerinckii/metabolismo , Fermentação , Hidrogênio/metabolismo , Óleo de Palmeira/metabolismo , Anaerobiose , Fenômenos Químicos , Clostridium beijerinckii/genética , Biologia Computacional , Ácidos Graxos Voláteis/análise , Sequenciamento de Nucleotídeos em Larga Escala , Resíduos Industriais , Consórcios Microbianos
7.
Sci Rep ; 10(1): 7008, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332902

RESUMO

This study reports the first phytochemical and biological characterization in treatment of adrenocortical carcinoma cells (H295R) of extracts from Nidularium procerum, an endemic bromeliad of Atlantic Forest vulnerable to extinction. Extracts of dry leaves obtained from in vitro-grown plants were recovered by different extraction methods, viz., hexanoic, ethanolic, and hot and cold aqueous. Chromatography-based metabolite profiling and chemical reaction methods revealed the presence of flavonoids, steroids, lipids, vitamins, among other antioxidant and antitumor biomolecules. Eicosanoic and tricosanoic acids, α-Tocopherol (vitamin E) and scutellarein were, for the first time, described in the Nidularium group. Ethanolic and aqueous extracts contained the highest phenolic content (107.3 mg of GAE.100 g-1) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity, respectively. The immunomodulatory and antitumoral activities of aqueous extracts were assessed using specific tests of murine macrophages modulation (RAW 264.7) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against adrenocortical carcinoma cell line, respectively. The aqueous extract improved cell adhesion and phagocytic activities and phagolysossomal formation of murine macrophages. This constitutes new data on the Bromeliaceae family, which should be better exploited to the production of new phytomedicines for pharmacological uses.


Assuntos
Bromeliaceae/química , Compostos Fitoquímicos/análise , Animais , Apigenina/metabolismo , Compostos de Bifenilo/química , Linhagem Celular Tumoral , Ácidos Graxos Insaturados/metabolismo , Humanos , Camundongos , Picratos/química , Células RAW 264.7 , Vitamina E/metabolismo
8.
Adv Food Nutr Res ; 91: 65-96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32035601

RESUMO

Coffee can be an ally in the fight against diseases such as type 2 diabetes, cancer, hepatic injury, cirrhosis, depression, suicidal behavior, and neurological and cardiovascular disorders. The properties of coffee also favor gastrointestinal tract and gut microbiota establishment. Coffee bioactive components include phenolic compounds (chlorogenic acids, cafestol and kahweol), alkaloids (caffeine and trigonelin), diterpenes (cafestol and kahweol) and other secondary metabolites. The image of coffee as a super functional food has helped to increase coffee consumption across the globe. This chapter addresses the main health promotion mechanisms associated with coffee consumption. Related topics on coffee production chain, world consumption and reuse of coffee by-products in the production of high-value-adding molecules with potential applications in the food industry are addressed and discussed.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Café/química , Dieta , Agricultura , Manipulação de Alimentos , Promoção da Saúde , Humanos
9.
Bioresour Technol ; 285: 121361, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31018172

RESUMO

Oil palm empty fruit bunches is a lignocellulosic feedstock with biotechnological potential and thousands of tons are generated in the world each year. Filamentous fungi producing xylanases and ligninases in biopulping to obtain cellulose is a pulp improvement alternative. The enzymatic cocktail was produced in solid-state biopulping by Aspergillus sp. LPB-5 with 54.32 U/g xylanase, 13.41 U/g lignin peroxidase and low cellulase activity. Biological, thermal and chemical pretreatments were compared and enzymatic biobleaching was applied to pretreated pulps. Biopulping and biobleaching combination had 36.80% lignin loss, 26.27% hemicellulose reduction, 74.36% pulp yield with 36.56% digestibility. Alkaline and biobleaching combination removed 81.97% hemicellulose and 93.89% lignin with 73.59% digestibility. Enzymatic biobleaching increased the pulp digestibility in all pretreatments. Finally, the development of a bio-pretreatment to remove hemicellulose and alter the lignin-carbohydrate complex interface presented a soft process with great eco-friendly potential, where mild pre-treatments would reduce the use of aggressive agents.


Assuntos
Frutas , Peroxidases , Aspergillus , Celulose , Lignina , Óleo de Palmeira
10.
Plant Biotechnol J ; 17(10): 1868-1891, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30908823

RESUMO

Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.


Assuntos
Infecções por HIV/complicações , Fitoterapia , Plantas Medicinais , Tuberculose/complicações , Fármacos Anti-HIV/farmacologia , Antituberculosos/farmacologia , Infecções por HIV/microbiologia , Humanos , Mycobacterium tuberculosis , Tuberculose/virologia
11.
Int J Med Mushrooms ; 20(4): 393-403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953399

RESUMO

Medicinal mushrooms are used in popular medicine largely as health promoters, mainly because of their antitumor and immunomodulatory activities. Ganoderma lucidum (lingzhi or reishi) and Agaricus brasiliensis are mushrooms that have long been used for medicinal purposes. This study evaluated their immunomodulatory and antitumor effects on mice fed a diet supplemented with G. lucidum and A. brasiliensis mycelia obtained from solid-state fermentation. For 14 weeks the mice were fed chow containing 50% A. brasiliensis and G. lucidum mycelia, using ground wheat as an excipient. The consumption of the supplemented diet inhibited Sarcoma 180 tumor growth and caused important changes in the immune system. The pattern of immune response shifted, increasing CD4+ and CD8+ and decreasing CD19+ cell populations. The restoration of a proper balance between cellular and humoral immunity is an essential process for restraining tumor growth. These results suggest that polysaccharides, such as ß-glucans and other mushroom metabolites, possibly promote the T-cell dominance that is imperative to restrain tumor growth.


Assuntos
Agaricus/química , Antineoplásicos/isolamento & purificação , Suplementos Nutricionais/análise , Fatores Imunológicos/isolamento & purificação , Reishi/química , Ração Animal/análise , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Dieta , Feminino , Fermentação , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Interleucinas/sangue , Camundongos , Micélio/química , Micélio/metabolismo , Sarcoma/imunologia
12.
Crit Rev Food Sci Nutr ; 57(13): 2775-2788, 2017 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26462969

RESUMO

Coffee has been for decades the most commercialized food product and most widely consumed beverage in the world, with over 600 billion cups served per year. Before coffee cherries can be traded and processed into a final industrial product, they have to undergo postharvest processing on farms, which have a direct impact on the cost and quality of a coffee. Three different methods can be used for transforming the coffee cherries into beans, known as wet, dry, and semi-dry methods. In all these processing methods, a spontaneous fermentation is carried out in order to eliminate any mucilage still stuck to the beans and helps improve beverage flavor by microbial metabolites. The microorganisms responsible for the fermentation (e.g., yeasts and lactic acid bacteria) can play a number of roles, such as degradation of mucilage (pectinolytic activity), inhibition of mycotoxin-producing fungi growth, and production of flavor-active components. The use of starter cultures (mainly yeast strains) has emerged in recent years as a promising alternative to control the fermentation process and to promote quality development of coffee product. However, scarce information is still available about the effects of controlled starter cultures in coffee fermentation performance and bean quality, making it impossible to use this technology in actual field conditions. A broader knowledge about the ecology, biochemistry, and molecular biology could facilitate the understanding and application of starter cultures for coffee fermentation process. This review provides a comprehensive coverage of these issues, while pointing out new directions for exploiting starter cultures in coffee processing.


Assuntos
Café/química , Fermentação , Manipulação de Alimentos/métodos , Bebidas , Microbiologia de Alimentos , Fungos , Humanos , Paladar
13.
Crit Rev Biotechnol ; 37(5): 656-671, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27653190

RESUMO

In recent years, foods that contain omega-3 lipids have emerged as important promoters of human health. These lipids are essential for the functional development of the brain and retina, and reduction of the risk of cardiovascular and Alzheimer's diseases. The global market for omega-3 production, particularly docosahexaenoic acid (DHA), saw a large expansion in the last decade due to the increasing use of this lipid as an important component of infant food formulae and supplements. The production of omega-3 lipids from fish and vegetable oil sources has some drawbacks, such as complex purification procedures, unwanted contamination by marine pollutants, reduction or even extinction of several species of fish, and aspects related to sustainability. A promising alternative system for the production of omega-3 lipids is from microbial metabolism of yeast, fungi, or microalgae. The aim of this review is to discuss the various omega-3 sources in the context of the global demand and market potential for these bioactive compounds. To summarize, it is clear that fish and vegetable oil sources will not be sufficient to meet the future needs of the world population. The biotechnological production of single-cell oil comes as a sustainable alternative capable of supplementing the global demand for omega-3, causing less environmental impact.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Animais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Óleos de Peixe , Humanos , Microalgas
14.
Int J Med Mushrooms ; 18(9): 757-767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27910768

RESUMO

Ganoderma lucidum is a well-known representative of mushrooms that have been used in traditional Chinese medicine for centuries. New discoveries related to this medicinal mushroom and its biological properties are frequently reported. However, only recently have scientists started to pay special attention to G. lucidum spores. This is in part because of the recent development of methods for breaking the spore wall and extracting biocompounds from the spore. Although some research groups are working with G. lucidum spores, data in the literature are still limited, and the methods used have not been systematized. This review therefore describes the main advances in techniques for breaking the spore wall and extracting biocompounds from the spore. In addition, the major active components identified and their biological properties, such as neurological activity and antiaging and cell-protective effects, are investigated because these are of importance for potential drug development.


Assuntos
Envelhecimento/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Citoproteção/efeitos dos fármacos , Reishi/química , Esporos Fúngicos/química , Fármacos do Sistema Nervoso Central/química , Humanos
15.
Physiol Mol Biol Plants ; 22(2): 271-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27436918

RESUMO

Origanum vulgare L is commonly known as a wild marjoram and winter sweet which has been used in the traditional medicine due to its therapeutic effects as stimulant, anticancer, antioxidant, antibacterial, anti-inflammatory and many other diseases. A reliable gene transfer system via Agrobacterium rhizogenes and plant regeneration via hairy roots was established in O. vulgare for the first time. The frequency of induced hairy roots was different by modification of the co-cultivation medium elements after infection by Agrobacterium rhizogenes strains K599 and ATCC15834. High transformation frequency (91.3 %) was achieved by co-cultivation of explants with A. rhizogenes on modified (MS) medium. The frequency of calli induction with an 81.5 % was achieved from hairy roots on MS medium with 0.25 mg/L(-1) 2,4-D. For shoot induction, initiated calli was transferred into a medium containing various concentrations of BA (0.1, 0.25, 0.5, 0.75 and 1 mg/L(-1)). The frequency of shoot generation (85.18 %) was achieved in medium fortified with 0.25 mg/L(-1) of BA. Shoots were placed on MS medium with 0.25 mg/l IBA for root induction. Roots appeared and induction rate was achieved after 15 days.

16.
Bioresour Technol ; 199: 173-180, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26343575

RESUMO

The oil palm empty fruit bunches (EFB) are an attractive source of carbon for the production of biochemical products, therefore, the aim of this work is to analyze the effect of the steam explosion (SE) pretreatment under autocatalytic conditions on EFB using a full experimental design. Temperature and reaction time were the operational variables studied. The EFB treated at 195°C for 6 min showed an increase of 34.69% in glycan (mostly cellulose), and a reduction of 68.12% in hemicelluloses, with increased enzymatic digestibility to 33% producing 4.2 g L(-1) of glucose. Scanning electron micrographs of the steam treated EFB exhibited surface erosion and an increased fiber porosity. Fourier transform infrared spectroscopy showed the solubilization of hemicellulose and modification of cellulose in treated EFB.


Assuntos
Arecaceae/química , Biotecnologia/métodos , Frutas/química , Óleos de Plantas/química , Vapor , Biomassa , Catálise , Celulase/metabolismo , Cromatografia Líquida de Alta Pressão , Etanol/química , Glucose/análise , Hidrólise , Óleo de Palmeira , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Braz. arch. biol. technol ; 59: e16150519, 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951351

RESUMO

L-Lysine is an essential aminoacid added as supplement for animal feed. The aim of this work was to produce an L-Lysine enriched bran using Brazilian agroindustrial byproducts. Both the raw material costs and purification steps were minimized. Firstly, medium composition for the growth of Corynebacterium glutamicum ATCC 21799 was optimized targeting enhanced L-Lysine production - salt, vitamins and nitrogen sources concentrations were tested and selected. Next, UV mutant strains were generated and the best producers were used in formulated media using sugarcane molasses. It was reached a production of 9.3 g/L of L-Lysine with the optimized formulated media. This L-Lyisne rich broth was then impregnated and cyclically reimpregnated in pre-treated solid matrixes (sugarcane bagasse, citrus pulp, brewer spent grain, soybean husk and wheat bran). After processing, it was generated enriched brans with significant amounts of L-Lysine (13.8%, 7.0%, 8.9%, 5.9% and 8.4%, respectively), which has an interesting market potential for animal feed.

18.
Bioresour Technol ; 194: 172-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188560

RESUMO

Lignin is an important raw material for the sustainable biorefineries and also the forerunner of high-value added products, such as biocomposite for chemical, pharmaceutical and cement industries. Oil palm empty fruit bunches (OPEFB) were used for lignin preparation by successive treatment with 1% (w/w) H2SO4 at 121°C for 60 min and 2.5% NaOH at 121°C for 80 min resulting in the high lignin yield of 28.89%, corresponding to 68.82% of the original lignin. The lignin obtained was characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The results indicated a lignin with molecular masses ramping from 4500 kDa to 12,580 kDa. FTIR and NMR of these lignins showed more syringyl and p-hydroxyphenyl than guaiacyl units. Moderate acid/alkaline treatment provided lignin with high industrial potential and acid hydrolyzates rich in fermentable sugars and highly porous cellulosic fibers.


Assuntos
Arecaceae/metabolismo , Biotecnologia/métodos , Frutas/metabolismo , Lignina/metabolismo , Óleos de Plantas/metabolismo , Hidróxido de Sódio/farmacologia , Ácidos Sulfúricos/farmacologia , Arecaceae/efeitos dos fármacos , Arecaceae/ultraestrutura , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Frutas/efeitos dos fármacos , Frutas/ultraestrutura , Peso Molecular , Óleo de Palmeira , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Appl Biochem Biotechnol ; 176(3): 892-902, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25917545

RESUMO

The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Jatropha/citologia , Jatropha/metabolismo , Petróleo/análise , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Cinética , Proteínas de Plantas/metabolismo , Solubilidade
20.
Int J Food Microbiol ; 188: 60-6, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25087206

RESUMO

During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great potential for use as starter cultures in wet processing of coffee and may possibly help to control and standardize the fermentation process and produce coffee beverages with novel and desirable flavor profiles.


Assuntos
Café/metabolismo , Café/microbiologia , Fermentação , Leveduras/isolamento & purificação , Leveduras/metabolismo , Bebidas/normas , DNA Espaçador Ribossômico/genética , Frutas/metabolismo , Frutas/microbiologia , Humanos , Viabilidade Microbiana , Dados de Sequência Molecular , Odorantes/análise , Poligalacturonase/metabolismo , RNA Ribossômico , Estresse Fisiológico , Paladar , Leveduras/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA