Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med ; 106: 102529, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657235

RESUMO

Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/métodos , Prótons , Silício , Transferência Linear de Energia , Água , Terapia com Prótons/métodos
2.
Phys Med Biol ; 54(17): 5095-107, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19652291

RESUMO

The recently developed new radiochromic gel dosimeter based on Turnbull blue dye formed by irradiation (the TBG dosimeter) does not exhibit dose pattern degradation due to diffusion effects as observed in the Fricke-gel dosimeter with xylenol orange incorporated into the gel matrix (the FXG dosimeter). The TBG dosimeter can be easily prepared and its optical properties enable evaluation of the gel's response using the cone-beam optical computed tomography technique. The preparation procedure is described in the paper along with the basic characteristics of the gel, including dose response, dose sensitivity, ageing under different storage conditions, diffusion rates of Turnbull blue and gel density. The measurement of diffusion is described in more detail. The same method was applied to the FXG dosimeter for direct comparison. It was found that the diffusion coefficient of the TBG dosimeter stored at 24 degrees C is less than 4 x 10(-3) mm(2) h(-1) (1sigma confidence level), compared to the value of 7.3 x 10(-1) mm(2) h(-1) (1sigma) of the FXG dosimeter measured at the same temperature. Although the TBG dosimeter is less sensitive than the FXG dosimeter, its diffusion coefficient is practically negligible and, therefore, it offers large potential as a three-dimensional dosimeter for applications encompassing sharp dose gradients such as high-dose-rate brachytherapy.


Assuntos
Corantes/química , Ferrocianetos/química , Radiometria/métodos , Difusão , Géis , Modelos Lineares , Fenóis , Sulfóxidos , Temperatura , Fatores de Tempo , Xilenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA