RESUMO
Introduction: The development of combinatorial adjuvants is a promising strategy to boost vaccination efficiency. Accumulating evidence indicates that manganese exerts strong immunocompetence and will become an enormous potential adjuvant. Here, we described a novel combination of Mn2+ plus aluminum hydroxide (AH) adjuvant that significantly exhibited the synergistic immune effect. Methodology. Initially, IsdB3 proteins as the immune-dominant fragment of IsdB proteins derived from Staphylococcus aureus (S. aureus) were prepared. IsdB3 proteins were identified by western blotting. Furthermore, we immunized C57/B6 mice with IsdB3 proteins plus Mn2+ and AH adjuvant. After the second immunization, the proliferation of lymphocytes was measured by the cell counting kit-8 (CCK-8) and the level of IFN-γ, IL-4, IL-10, and IL-17 cytokine from spleen lymphocytes in mice and generation of the antibodies against IsdB3 in serum was detected with ELISA, and the protective immune response was assessed through S. aureus challenge. Results: IsdB3 proteins plus Mn2+ and AH obviously stimulated the proliferation of spleen lymphocytes and increased the secretion of IFN-γ, IL-4, IL-10, and IL-17 cytokine in mice, markedly enhanced the generation of the antibodies against IsdB3 in serum, observably decreased bacterial load in organs, and greatly improved the survival rate of mice. Conclusion: These data showed that the combination of Mn2+ and AH significantly acted a synergistic effect, reinforced the immunogenicity of IsdB3, and offered a new strategy to increase vaccine efficiency.
RESUMO
INTRODUCTION: Staphylococcus aureus seriously threatens human and animal health. IsdB137-361 of the iron surface determinant B protein (IsdB) from S. aureus exhibits the strong immunogenicity, but its immunoprotective effect is still to be further promoted. Because PEI-PLGA nanoparticles are generated by PEI conjugate with PLGA to develop great potential as a novel immune adjuvant, the immunogenicity of IsdB137-361 is likely be strengthened by PEI-PLGA. METHODS: Here, PEI-PLGA nanoparticles containing IsdB137-361 proteins were prepared by optimizing the entrapment efficiency. Mice were immunized with IsdB137-361 -PEI-PLGA nanoparticles to assess their anti-S. aureus effects. The level of IFN-γ, IL-4, IL-17, and IL-10 cytokines from spleen lymphocytes in mice and generation of the antibodies against IsdB137-361 in serum was assessed by ELISA, the protective immune response was appraised by S. aureus challenge. RESULTS: IsdB137-361 proteins loaded by PEI-PLGA were able to stimulate effectively the proliferation of spleen lymphocytes and increase the secretion of IFN-γ, IL-4, IL-17, and IL-10 cytokine from spleen lymphocytes, and significantly enhance generation of the antibodies against IsdB137-361 in serum, reduce the level of bacterial load in liver, spleen and kidney, and greatly improve the survival rate of mice after challenge. CONCLUSION: These data showed that PEI-PLGA nanoparticles can significantly enhance the immunogenicity of IsdB137-361 proteins, and provide an important reference for the development of novel immune adjuvant.
Assuntos
Nanopartículas , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Staphylococcus aureus , Interleucina-10 , Interleucina-17 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Interleucina-4 , Proteínas de Membrana , Adjuvantes Imunológicos , Citocinas , Infecções Estafilocócicas/prevenção & controleRESUMO
Here, we prepared the novel combined adjuvants, CTB as intra-molecular adjuvant, CpG and aluminum hydroxide (Alum) to strengthen the immunogenicity of clumping factor A221-550 of Staphylococcus aureus (S. aureus). The protein-immunoactive results showed CTB-ClfA221-550 elicited the strong immune responses to serum from mice immunized with CTB and ClfA221-550, respectively. The mice immunized with CTB-ClfA221-550 plus CpG and Alum adjuvant exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4, and IL-17 and displayed the higher proliferation response of splenic lymphocytes than the control groups, in addition, these mice generated the strongest humoral immune response against ClfA221-550 among all groups. Our results also showed CTB-ClfA221-550 plus CpG and Alum adjuvant obviously increased the survival percentage of the mice challenged by S. aureus. These data suggested that the novel combined adjuvants, CTB, CpG, and Alum, significantly enhance the immune responses triggered with ClfA221-550, and could provide a new approach against infection of S. aureus. ABBREVIATIONS: CTB: Cholera Toxin B; CpG: Cytosine preceding Guanosine; ODN: Oligodeoxynucleotides; Alum: Aluminum hydroxide; TRAP: Target of RNAIII-activating Protein; TLR9: Toll-like Receptor 9; TMB: 3, 3', 5, 5'-tetramethylbenzidine; mAbs: Monoclonal Antibodies; OD: Optical Densities; S. aureus: Staphylococcus aureus; ClfA: Clumping factor A; FnBPA: Fibronection-binding protein A; IsdB: Iron-regulated surface determinant B; SasA: Staphylococcus aureus Surface Protein A; GapC: Glycer-aldehyde-3-phosphate dehydrogenase-C.
Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Toxina da Cólera/farmacologia , Coagulase/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Interações Medicamentosas , Imunização , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Camundongos , Oligodesoxirribonucleotídeos/farmacologiaRESUMO
The aim of this study was to investigate the ameliorative effects of selenium-enriched yeast (Se-yeast) on the inflammatory damage induced by lead (Pb) in chicken skeletal muscles. A total of 108 1-day-old broiler chickens were randomly allocated into four groups (n = 27/group): the control group (C group), the Se-yeast-supplemented group (Se group), the lead-treated group (Pb group), and finally the Se- and Pb-combined group (Pb/Se group). The C group was fed with a basic diet comprising 0.049 mg/kg Se and 0.1 mg/kg Pb while the Se group was fed a Se-yeast diet containing 0.30 mg/kg Se and 0.1 mg/kg Pb. Similarly, the Pb group was fed a Pb acetate diet containing 0.049 mg/kg Se and 350 mg/kg Pb while the Pb/Se group was fed with a Se-yeast diet containing 0.30 mg/kg Se and 350 mg/kg Pb. On days 7, 21, and 35 after commencing the experiment, nine chicks belonging to each group were euthanized and the samples were analyzed by employing the techniques of inductively coupled plasma mass spectrometry and real-time quantitative PCR, along with Western blotting. The results indicated that excess Pb increased the nitric oxide concentration, enhanced the activity of inducible nitric oxide synthase (iNOS), and the mRNA levels of interleukin 1ß (IL-1ß), interleukin 4 (IL-4), interleukin 10 (IL-10), and interferon gamma (IFN-γ) in a time-dependent manner. Further, it was found that Se reduced damage caused by Pb by decreasing the expression of inflammatory factors in chicken skeletal muscles. Taken together, the results from this study provide the theoretical basis for an alleviate effect of Se on Pb-induced inflammatory damage in chicken skeletal muscles, mediated by inhibiting the Ras/extracellular signal-regulated kinase (ERK) pathway and the inflammatory factors.
Assuntos
Citocinas/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Selênio/farmacologia , Fermento Seco/metabolismo , Animais , Galinhas , Citocinas/metabolismo , Suplementos Nutricionais , Chumbo/sangue , Chumbo/toxicidade , Músculo Esquelético/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Selênio/administração & dosagem , Selênio/sangue , Fermento Seco/administração & dosagemRESUMO
Dietary selenium (Se) deficiency is known to cause myodynia syndrome and Se influences immune responses by changing the expression of inflammatory cytokines and heat shock proteins (Hsps), but the details are not completely elucidated. In the present study, 72 1-day-old mice were divided into two groups; the first group was fed a Se-sufficient diet, while the second group was fed a Se-deficient diet. Skeletal muscles and blood samples were taken from all mice after 42 days of treatment. The activities of glutathione peroxidase (GPX) and glutathione (GSH), mRNA and protein expression levels of inflammatory cytokines (including TNF-α, inducible NO synthase, cyclooxygenase-2, and prostaglandin E synthases), protein expression levels of NF-κB, and the mRNA expression levels of Hsps in the skeletal muscles of mice were examined. The results showed that GPX and GSH activities were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the mRNA levels of Hsps were increased by Se deficiency in mouse skeletal muscles. In the present study, the protective role of Se in oxidative stress, inflammatory cytokines, and Hsps in the skeletal muscles of mice was summarized.
Assuntos
Citocinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Mediadores da Inflamação/metabolismo , Músculo Esquelético/metabolismo , Selênio/deficiência , Animais , Animais Recém-Nascidos , Citocinas/genética , Feminino , Expressão Gênica , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Oxirredução , Estresse Oxidativo , Selênio/sangueRESUMO
Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.