Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Redox Biol ; 70: 103064, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320455

RESUMO

Amyloid-beta (Aß) is a key factor in the onset and progression of Alzheimer's disease (AD). Selenium (Se) compounds show promise in AD treatment. Here, we revealed that selenoprotein K (SELENOK), a selenoprotein involved in immune regulation and potentially related to AD pathology, plays a critical role in microglial immune response, migration, and phagocytosis. In vivo and in vitro studies corroborated that SELENOK deficiency inhibits microglial Aß phagocytosis, exacerbating cognitive deficits in 5xFAD mice, which are reversed by SELENOK overexpression. Mechanistically, SELENOK is involved in CD36 palmitoylation through DHHC6, regulating CD36 localization to microglial plasma membranes and thus impacting Aß phagocytosis. CD36 palmitoylation was reduced in the brains of patients and mice with AD. Se supplementation promoted SELENOK expression and CD36 palmitoylation, enhancing microglial Aß phagocytosis and mitigating AD progression. We have identified the regulatory mechanisms from Se-dependent selenoproteins to Aß pathology, providing novel insights into potential therapeutic strategies involving Se and selenoproteins.


Assuntos
Doença de Alzheimer , Antígenos CD36 , Microglia , Selenoproteínas , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Lipoilação , Camundongos Transgênicos , Microglia/metabolismo , Fagocitose , Selenoproteínas/genética , Selenoproteínas/metabolismo , Antígenos CD36/metabolismo
2.
Genes (Basel) ; 14(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372323

RESUMO

Tetraploid cultivated cotton (Gossypium spp.) produces cottonseeds rich in protein and oil. Gossypol and related terpenoids, stored in the pigment glands of cottonseeds, are toxic to human beings and monogastric animals. However, a comprehensive understanding of the genetic basis of gossypol and gland formation is still lacking. We performed a comprehensive transcriptome analysis of four glanded versus two glandless tetraploid cultivars distributed in Gossypium hirsutum and Gossypium barbadense. A weighted gene co-expression network analysis (WGCNA) based on 431 common differentially expressed genes (DEGs) uncovered a candidate module that was strongly associated with the reduction in or disappearance of gossypol and pigment glands. Further, the co-expression network helped us to focus on 29 hub genes, which played key roles in the regulation of related genes in the candidate module. The present study contributes to our understanding of the genetic basis of gossypol and gland formation and serves as a rich potential source for breeding cotton cultivars with gossypol-rich plants and gossypol-free cottonseed, which is beneficial for improving food safety, environmental protection, and economic gains of tetraploid cultivated cotton.


Assuntos
Gossipol , Animais , Humanos , Gossipol/metabolismo , Gossypium/genética , Gossypium/metabolismo , Óleo de Sementes de Algodão/metabolismo , Tetraploidia , Melhoramento Vegetal , Perfilação da Expressão Gênica
3.
Antioxidants (Basel) ; 11(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35624693

RESUMO

Aberrant lipid metabolism is reported to be closely related to the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). Selenium (Se) and folate are two ideal and safe nutritional supplements, whose biological effects include regulating redox and homocysteine (Hcy) homeostasis in vivo. Here, to achieve effective multitarget therapy for AD, we combined Se and folic acid in a co-supplementation regimen (Se-FA) to study the therapeutic potential and exact mechanism in two transgenic mouse models of AD (APP/Tau/PSEN and APP/PS1). In addition to a reduction in Aß generation and tau hyperphosphorylation, a restoration of synaptic plasticity and cognitive ability was observed in AD mice upon Se-FA administration. Importantly, by using untargeted metabolomics, we found that these improvements were dependent on the modulation of brain lipid metabolism, which may be associated with an antioxidant effect and the promotion of Hcy metabolism. Thus, from mechanism to effects, this study systematically investigated Se-FA as an intervention for AD, providing important mechanistic insights to inform its potential use in clinical trials.

4.
Antioxid Redox Signal ; 35(11): 863-884, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32475153

RESUMO

Aims: Strong evidence has implicated synaptic failure as a direct contributor to cognitive decline in Alzheimer's disease (AD), and selenium (Se) supplementation has demonstrated potential for AD treatment. However, the exact roles of Se and related selenoproteins in mitigating synaptic deficits remain unclear. Results: Our data show that selenomethionine (Se-Met), as the major organic form of Se in vivo, structurally restored synapses, dendrites, and spines, leading to improved synaptic plasticity and cognitive function in triple transgenic AD (3 × Tg-AD) mice. Furthermore, we found that Se-Met ameliorated synaptic deficits by inhibiting extrasynaptic N-methyl-d-aspartate acid receptors (NMDARs) and stimulating synaptic NMDARs, thereby modulating calcium ion (Ca2+) influx. We observed that a decrease in selenoprotein K (SELENOK) levels was closely related to AD, and a similar disequilibrium was found between synaptic and extrasynaptic NMDARs in SELENOK knockout mice and AD mice. Se-Met treatment upregulated SELENOK levels and restored the balance between synaptic and extrasynaptic NMDAR expression in AD mice. Innovation: These findings establish a key signaling pathway linking SELENOK and NMDARs with synaptic plasticity regulated by Se-Met, and thereby provide insight into mechanisms by which Se compounds mediate synaptic deficits in AD. Conclusion: Our study demonstrates that Se-Met restores synaptic deficits through modulating Ca2+ influx mediated by synaptic and extrasynaptic NMDARs in 3 × Tg-AD mice, and suggests a potentially functional interaction between SELENOK and NMDARs. Antioxid. Redox Signal. 35, 863-884.


Assuntos
Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Sinapses/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Transgênicos
5.
Int J Mol Sci ; 20(12)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248178

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the presence of extracellular senile plaques primarily composed of Aß peptides and intracellular neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins. Olfactory dysfunction is an early clinical phenotype in AD and was reported to be attributable to the presence of NFTs, senile Aß plaques in the olfactory bulb (OB). Our previous research found that selenomethionine (Se-Met), a major form of selenium (Se) in organisms, effectively increased oxidation resistance as well as reduced the generation and deposition of Aß and tau hyperphosphorylation in the olfactory bulb of a triple transgenic mouse model of AD (3×Tg-AD), thereby suggesting a potential therapeutic option for AD. In this study, we further investigated changes in the transcriptome data of olfactory bulb tissues of 7-month-old triple transgenic AD (3×Tg-AD) mice treated with Se-Met (6 µg/mL) for three months. Comparison of the gene expression profile between Se-Met-treated and control mice revealed 143 differentially expressed genes (DEGs). Among these genes, 21 DEGs were upregulated and 122 downregulated. The DEGs were then annotated against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The results show that upregulated genes can be roughly classified into three types. Some of them mainly regulate the regeneration of nerves, such as Fabp7, Evt5 and Gal; some are involved in improving cognition and memory, such as Areg; and some are involved in anti-oxidative stress and anti-apoptosis, such as Adcyap1 and Scg2. The downregulated genes are mainly associated with inflammation and apoptosis, such as Lrg1, Scgb3a1 and Pglyrp1. The reliability of the transcriptomic data was validated by quantitative real time polymerase chain reaction (qRT-PCR) for the selected genes. These results were in line with our previous study, which indicated therapeutic effects of Se-Met on AD mice, providing a theoretical basis for further study of the treatment of AD by Se-Met.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Selênio/farmacologia , Transcriptoma , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Camundongos , Reprodutibilidade dos Testes , Selênio/uso terapêutico
6.
Food Funct ; 9(7): 3965-3973, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29974078

RESUMO

Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disease that exhibits multiple pathogeneses and heterogeneity. Selenium (Se) is an essential trace element for human and animal nutrition. It has been shown that supplementation with two organic forms of Se, Se-enriched yeast (Se-yeast) and selenomethionine (Se-Met), could improve cognitive impairment, reverse synaptic deficits and mitigate tau pathology in triple-transgenic (3× Tg) AD mice. Se-yeast is well known for its high Se-Met content, which may mediate its anti-AD effects. In addition, a large amount of the physiological and biochemical mechanisms of these two Se drugs in the amelioration AD pathology remains unknown. In this study, the content of Se-yeast aside from Se was analyzed, and the effects of Se-Met and Se-yeast on 3× Tg-AD mice were investigated and compared. The results showed that both Se-Met and Se-yeast not only significantly increased the Se levels, enhanced the antioxidant capacity and improved the cognitive decline in the model, but also decreased the Aß and tau pathologies in the brain tissue of the AD mice. Moreover, the ability of Se-Met to increase the Se levels in different tissues of the AD mice was more significant than that of Se-yeast. However, the positive effect of Se-yeast on improving the cognitive ability of the AD mice was better than that of Se-Met, likely due to the various elements, vitamins and other nutrients in Se-yeast. Collectively, these results suggest that Se-yeast has potential as a clinical health product or drug for AD but that Se-Met, as a pure organic Se compound, is more suitable for studying the therapeutic mechanism of Se because of its comprehensive effects on AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Saccharomyces cerevisiae/química , Selênio/administração & dosagem , Selenometionina/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Suplementos Nutricionais/análise , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Selênio/metabolismo
7.
Metallomics ; 10(8): 1107-1115, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30043821

RESUMO

As the most common cause of progressive intellectual failure in elderly humans, Alzheimer's disease (AD) is pathologically featured by amyloid plaques, synaptic loss, and neurofibrillary tangles. The amyloid plaques are mainly aggregates of amyloid ß-peptide (Aß), a primary factor contributing to the pathogenesis of AD. Elimination or reduction of the level of Aß is considered an important strategy in AD treatment. The pharmacotherapeutic efficacy of selenium (Se), an essential biological trace element for mammalian species, has been confirmed in a number of experimental models of neurodegenerative diseases. Selenium-enriched yeast (Se-yeast) is commonly used as a nutritional supplement for Se. In this study, we investigated the effects and underlying mechanisms of Se-yeast on Aß pathology in a 4-month-old triple transgenic mouse model of AD (3×Tg-AD mice). The administration of Se-yeast attenuated the deposition of Aß in the brains of AD mice, which was concomitant with decreased levels of LC3II. The Se-yeast treatment decreased the level of amyloid-protein precursor (APP), downregulated the activity of AMP-activated protein kinase (AMPK) and upregulated the activity of AKT/mTOR/p70S6K. Furthermore, the levels of p62 also significantly decreased, and the cathepsin D levels increased, accompanied by increased turnover of Aß and APP in Se-yeast-treated AD mice. In addition to decreasing the generation of Aß, Se-yeast also inhibited the initiation of autophagy by modulating the AMPK/AKT/mTOR/p70S6K signaling pathway and enhanced autophagic clearance, thus reducing the burden of Aß accumulation in the brains of AD mice. Our results further highlight the potential therapeutic effects of Se-yeast on AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Modelos Animais de Doenças , Saccharomyces cerevisiae/metabolismo , Selênio/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos
8.
J Agric Food Chem ; 65(24): 4970-4979, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28578584

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by multiple histopathological changes in the brain and by impairments in memory and cognitive function. Currently, there is no effective treatment that can halt or reverse the progression of this disease. Here, we explored the effects of 3 months of treatment with selenium-enriched yeast (Se-yeast), which is commonly used as a source of organic selenium (Se) for nutrition, on cognitive dysfunction and neuropathology in the triple transgenic mouse model of AD (3×Tg-AD mice). As the results revealed that Se-yeast significantly improved the spatial learning and memory retention of 3×Tg-AD mice, promoted neuronal activity, attenuated the activation of astrocytes and microglia, mitigated synaptic deficits, and reduced the levels of total tau and phosphorylated tau though inhibiting the activity of GSK-3ß, dietary supplementation with Se-yeast exerted multiple beneficial effects on the prevention or treatment of AD. These findings provide evidence of a potentially viable compound for AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Saccharomyces cerevisiae/química , Selênio/administração & dosagem , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Suplementos Nutricionais/análise , Modelos Animais de Doenças , Progressão da Doença , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Selênio/metabolismo , Proteínas tau/genética
9.
J Alzheimers Dis ; 41(1): 85-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24577479

RESUMO

Disruption of the intracellular balance between free radicals and the antioxidant system is a prominent and early feature in the neuropathology of Alzheimer's disease (AD). Selenium, a vital trace element with known antioxidant potential, has been reported to provide neuroprotection through resisting oxidative damage but its therapeutic effect on AD remains to be investigated. The objective of our study was to investigate the potential of selenomethionine (Se-Met), an organic form of selenium, in the treatment of cognitive dysfunction and neuropathology of triple transgenic AD (3 × Tg-AD) mice. 3 × Tg-AD mice, which were four months old, were treated with Se-Met for 3 months and demonstrated significant improvements in cognitive deficit along with an increased selenium level compared with the untreated control mice. Se-Met treatment significantly reduced the level of total tau and phosphorylated tau, mitigated the decrease of synaptic proteins including synaptophysin and postsynaptic density protein 95 in the hippocampus and cortex of the 3 × Tg-AD mice. Meanwhile, glial activation in AD mice was inhibited and the level of reduced glutathione was increased in the treated mice compared with control mice. Additionally, the expression and activity of glycogen synthase kinase 3ß and protein phosphatase 2A, two important enzymes involved in tau phosphorylation, were markedly decreased and increased respectively by Se-Met treatment. Thus Se-Met improves cognitive deficit in a murine model of AD, which is associated with reduction in tau expression and hyperphosphorylation, amelioration of inflammation, and restoration of synaptic proteins and antioxidants. This study provides a novel therapeutic approach for the prevention of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Transtornos Cognitivos/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Selenometionina/farmacologia , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Feminino , Glutationa/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Guanilato Quinases/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neuroglia/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Selênio/metabolismo , Sinapses/patologia , Sinapses/fisiologia , Sinaptofisina/metabolismo
10.
J Integr Plant Biol ; 55(7): 654-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23758934

RESUMO

Gossypium mustelinum ((AD)4 ) is one of five disomic species in Gossypium. Three 45S ribosomal DNA (rDNA) loci were detected in (AD)4 with 45S rDNA as probe, and three pairs of brighter signals were detected with genomic DNA (gDNA) of Gossypium D genome species as probes. The size and the location of these brighter signals were the same as those detected with 45S rDNA as probe, and were named GISH-NOR. One of them was super-major, which accounted for the fact that about one-half of its chromosome at metaphase was located at chromosome 3, and other two were minor and located at chromosomes 5 and 9, respectively. All GISH-NORs were located in A sub-genome chromosomes, separate from the other four allopolyploid cotton species. GISH-NOR were detected with D genome species as probe, but not A. The greatly abnormal sizes and sites of (AD)4 NORs or GISH-NORs indicate a possible mechanism for 45S rDNA diversification following (AD)4 speciation. Comparisons of GISH intensities and GISH-NOR production with gDNA probes between A and D genomes show that the better relationship of (AD)4 is with A genome. The shortest two chromosomes of A sub-genome of G. mustelinum were shorter than the longest chromosome of D sub-genome chromosomes. Therefore, the longest 13 chromosomes of tetraploid cotton being classified as A sub-genome, while the shorter 13 chromosomes being classified as D sub-genome in traditional cytogenetic and karyotype analyses may not be entirely correct.


Assuntos
DNA Ribossômico/genética , Genoma de Planta/genética , Gossypium/genética , Hibridização in Situ Fluorescente , Cromossomos de Plantas/genética , DNA de Plantas/genética , Diploide , Hibridização Genética , Cariotipagem , Metáfase/genética , Região Organizadora do Nucléolo/genética , Pólen/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA