Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 15(4): 2208-2220, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38317482

RESUMO

In our previous study, a polyphenol-utilization targeted quinoa product was developed via solid-state fermentation with Monascus anka. In this study, we investigated the polyphenol-related novel functions of the fermented product further. Compared with unfermented quinoa, M. anka fermented quinoa alleviated the trapping effect of the macromolecules, especially in the colonic fermentation stage, resulting in enhanced polyphenol bioaccessibility. Lachnoclostridium, Megasphaera, Megamonas, Dialister, and Phascolarctobacterium might contribute to polyphenol liberation and metabolism in fermented quinoa. Additionally, fermented quinoa polyphenols presented an efficient anti-obesity effect by enhancing hepatic antioxidant enzyme activities, suppressing fatty acid synthesis, accelerating fatty acid oxidation, and improving bile acid synthesis. Moreover, fermented quinoa polyphenol supplementation alleviated gut microbiota disorder induced by a high-fat diet, resulting in a decreased ratio of Firmicutes/Bacteroidota, and increased relative abundances of Lactobacillus and Lachnoclostridium. The obtained results suggested that the principal anti-obesity effect of fermented quinoa polyphenols might act through the AMPK/PPARα/CPT-1 pathway. In conclusion, M. anka solid-state fermentation effectively enhanced the bioaccessibility of quinoa, and the fermented quinoa polyphenols showed considerable anti-obesity effect. Our findings provide new perspectives for the development of dietary polyphenol-based satiety-enhancing functional foods.


Assuntos
Chenopodium quinoa , Microbioma Gastrointestinal , Monascus , Polifenóis/farmacologia , Fermentação , Ácidos Graxos
2.
Food Funct ; 14(16): 7469-7477, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37489980

RESUMO

Satiety hormone cholecystokinin (CCK) plays a vital role in appetite inhibition. Its secretion is regulated by dietary components. The search for bioactive compounds that stimulate CCK secretion is currently an active area of research. The objective of this study was to evaluate the ability of buckwheat (Fagopyrum esculentum Moench) protein digest (BPD) to stimulate CCK secretion in vitro and in vivo and clarify the structural characteristics of peptides stimulating CCK secretion. BPD was prepared by an in vitro gastrointestinal digestion model. The relative molecular weight of BPD was <10 000 Da, and peptides with <3000 Da accounted for 70%. BPD was rich in essential amino acids Lys, Leu, and Val but lacked sulfur amino acids Met and Cys. It had a stimulatory effect on CCK secretion in vitro and in vivo. Chromatographic separation was performed to isolate peptide fractions involved in CCK secretion, and five novel CCK-releasing peptides including QFDLDD, PAFKEEHL, SFHFPI, IPPLFP, and RVTVQPDS were successfully identified. A sequence length range of 6-8 and marked hydrophobicity (18-28) were observed among the most CCK-releasing peptides. The present study demonstrated for the first time that BPD could stimulate CCK secretion and clarify the structural characteristics of bioactive peptides having CCK secretagogue activity in BPD.


Assuntos
Colecistocinina , Fagopyrum , Colecistocinina/metabolismo , Fagopyrum/metabolismo , Peptídeos , Proteínas , Digestão
3.
Food Funct ; 13(11): 6233-6243, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35587126

RESUMO

The demand for plant-based proteins has been rapidly increasing due to sustainability, ethical and health reasons. The present study aimed to investigate the digestion characteristics of three plant proteins (quinoa, barley and mungbean) based on an in vitro digestion model and the effect of their simulated gastrointestinal digests on satiety hormone cholecystokinin (CCK) secretion in enteroendocrine STC-1 cells. The nitrogen distribution in the digestion process, the relative molecular weight (MW) of peptides and the amino acid composition in simulated gastrointestinal digests were characterized. Quinoa protein had the highest proportion of soluble nitrogen after gastrointestinal digestion (85.79%), followed by barley protein (74.98%) and mungbean protein (64.14%), suggesting that quinoa protein was more easily digested than barley and mungbean proteins. The peptides but not free amino acids were the main components in the gastrointestinal digests of quinoa, barley, and mungbean proteins. The gastrointestinal digest of quinoa protein had a well balanced amino acid pattern, whereas that of barley protein was lacking Lys, and that of the mungbean protein was short of sulfur amino acids (Phe + Tyr) but rich in Lys. In terms of the ability to stimulate CCK secretion, the gastrointestinal digest of barley protein had a strong stimulatory effect on CCK secretion, while that of quinoa and mungbean proteins had only a weak stimulatory effect. After pretreatment with a specific calcium-sensing receptor (CaSR) antagonist NPS 2143, CCK secretion induced by the barley protein digest was greatly suppressed, indicating that CaSR was involved in barley protein digest-induced CCK secretion. These results show that quinoa protein has good nutritional quality, while barley protein is an excellent plant protein source to stimulate CCK secretion and has a potential application as a dietary supplement for obesity management.


Assuntos
Chenopodium quinoa , Hordeum , Vigna , Aminoácidos/metabolismo , Chenopodium quinoa/química , Colecistocinina/metabolismo , Digestão , Células Enteroendócrinas , Hordeum/metabolismo , Nitrogênio/metabolismo , Peptídeos/farmacologia , Proteínas de Plantas/metabolismo , Receptores de Detecção de Cálcio/metabolismo
4.
Food Funct ; 11(6): 5573-5580, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32520042

RESUMO

Although the use of collagen hydrolysates (CHs) as nutraceutical agents to protect skin against photoaging has been widely investigated, little is known about their effects on skin chronological aging and the underlying mechanism. Nutritional supplementation, such as collagen and related hydrolysates, might have beneficial effects on chronologically aged skin just as on photoaged skin. Hence, 13-month-old female Kunming mice ingested CHs for eight weeks to evaluate the effects of CHs on ameliorating skin chronological aging. CHs were enzymatically prepared using alcalase or collagenase, named ACH and CCH, respectively. The results showed that CHs or proline intake had no obvious effects on skin moisture and hyaluronic acid contents. However, ACHs significantly decreased skin laxity, increased collagen I content, normalized the ratio of collagen I/III and repaired dermal collagen fibers in a dose-dependent manner. At an identical dose, ACH showed an advantage over CCH or proline in significantly increasing collagen I content. Further study indicated that CHs mainly improved skin condition by activating the transforming growth factor ß (TGF-ß)/Smad signaling pathway to promote the synthesis of collagen I rather than inhibiting collagen I degradation by deregulating activator protein-1 (AP-1). The results indicated that CHs could benefit skin in both extrinsic and intrinsic aging as active dietary supplements.


Assuntos
Colágeno/metabolismo , Colágeno/farmacologia , Ingestão de Alimentos/fisiologia , Envelhecimento da Pele/fisiologia , Pele/metabolismo , Envelhecimento , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Feminino , Fibroblastos , Camundongos , Pele/efeitos dos fármacos , Pele/patologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/patologia , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta , Raios Ultravioleta
5.
J Agric Food Chem ; 62(17): 3806-12, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24697722

RESUMO

High-density steam flash-explosion (HDSF) was first employed to extract flavonoids from pine needles. The HDSF treatment was performed at a steam pressure of 0.5-2.0 MPa for 20-120 s. Scanning electron microscopy and high-performance liquid chromatography combined with photodiode-array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) were used to characterize the morphological changes and analyze flavonoids of pine needles before and after HDSF treatment. Our results indicated that, after steam explosion at 1.5 MPa for 60 s, the flavonoids extracted reached 50.8 rutin equivalents mg/g dry weight, which was 2.54-fold as that of the untreated sample. HDSF pretreatment caused the formation of large micropores on the pine needles and production of particles, as well as the removal of wax layers. Compared to microwave-assisted, ultrasound-assisted, and solvent extraction, HDSF pretreatment took only 30 min to reach a maximum yield of 47.0 rutin equivalents mg/g flavonoids extract after pine needles were treated at 1.5 MPa for 80 s. In addition, after HDSF treatment, the aglycones were 3.17 times higher than that of untreated pine needles, while glycosides were lower by 57% (in HPLC-DAD individuals' sum) due to hydrolysis of flavonoids glycosides. It can be concluded that HDSF is a practical pretreatment for extraction of flavonoids and conversion in the healthy food and pharmaceutical industries.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Flavonoides/isolamento & purificação , Larix/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Métodos Analíticos de Preparação de Amostras/instrumentação , Flavonoides/análise , Extratos Vegetais/análise , Rutina/análise , Rutina/isolamento & purificação , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA