Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 29(10): 3081-3093, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37144588

RESUMO

AIMS: Gecko, the "sky dragon" named by Traditional Chinese Medicine, undergoes rapid coagulation and scarless regeneration following tail amputation in the natural ecology, providing a perfect opportunity to develop the efficient and safe drug for blood clotting. Here, gecko thrombin (gthrombin) was recombinantly prepared and comparatively studied on its procoagulant activity. METHODS: The 3D structure of gthrombin was constructed using the homology modeling method of I-TASSER. The active gthrombin was prepared by the expression of gecko prethrombin-2 in 293 T cells, followed by purification with Ni2+ -chelating column chromatography prior to activation by snake venom-derived Ecarin. The enzymatic activities of gthrombin were assayed by hydrolysis of synthetic substrate S-2238 and the fibrinogen clotting. The vulnerable nerve cells were used to evaluate the toxicity of gthrombin at molecular and cellular levels. RESULTS: The active recombinant gthrombin showed super-high catalytic and fibrinogenolytic efficiency than those of human under different temperatures and pH conditions. In addition, gthrombin made nontoxic effects on the central nerve cells including neurons, contrary to those of mammalian counterparts, which contribute to neuronal damage, astrogliosis, and demyelination. CONCLUSIONS: A super-high activity but safe procoagulant candidate drug was identified from reptiles, which provided a promising perspective for clinical application in rapid blood clotting.


Assuntos
Lagartos , Trombina , Animais , Humanos , Trombina/farmacologia , Trombina/metabolismo , Coagulação Sanguínea , Lagartos/metabolismo , Mamíferos/metabolismo
2.
Neurosci Lett ; 696: 99-107, 2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30572102

RESUMO

Achyranthes bidentata polypeptides (ABPP), an active polypeptides isolated from the aqueous extract of Achyranthes bidentata Blume, contributes to the regeneration of injured peripheral nerves by promoting migration of Schwann cells (SCs). In this study, we aimed to investigate the possible mechanism underlying the ABPP-induced migration of primary cultured rat SCs. Transwell migration assays indicated that ABPP promoted SCs migration in a concentration-dependent manner by inducing production of NADPH-oxidase (NOX)-derived reactive oxygen species (ROS). Inhibition of ROS production by NOXs inhibitor apocynin (APO) or diphenyleneiodonium (DPI) partially blocked ABPP-mediated SCs migration. Furthermore, by using real-time polymerase chain reaction analysis and siRNA interference technique, we verified the participation of NOX subunit 4 (NOX4) and dual oxidase 2 (DUOX2) in ABPP-induced ROS production and consequential SCs migration. Taken together, these results demonstrated that ABPP promoted SCs migration via NOX4/DUOX2-activated ROS in SCs.


Assuntos
Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células de Schwann/efeitos dos fármacos , Achyranthes/metabolismo , Animais , Oxidases Duais/metabolismo , NADPH Oxidase 4/metabolismo , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA