Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 468: 133837, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401216

RESUMO

The sound disposal of the ensuing heavy metal-rich plants can address the aftermath of phytoremediation. In this study, the first attempt was made to obtain heavy metals-free and phosphorus-rich biochar from phytoremediation residue (PR) by pyrolysis, and the effects of chlorinating agent type, chlorine dosage, and pyrolysis residence time on heavy metal removal, phosphorus (P) transformation, and biochar properties were investigated. The results showed that as chlorine dosage and pyrolysis residence time increased, added polyvinyl chloride (PVC) reduced the concentration of Zn in biochar to one-tenth of that in PR by intensified chlorination, where both Zn concentration (2727.50 mg/kg) and its leaching concentration (29.13 mg/L) met the utilization requirements, in which the acid-base property of biochar plays a key role in heavy metal leaching. Meanwhile, more than 90% of P in PR remained in biochar and the bioavailability of P in biochar enhanced with the decomposition of organic P to inorganic P, where the concentration of plant-availability P (Pnac) expanded from 1878.40 mg/kg in PR to 8454.00 mg/kg in biochar. This study demonstrated that heavy metal hyperaccumulator can be converted into heavy metal-free and phosphorus-rich biochar with promising applications, which provides new perspectives for the treatment of such hazardous wastes.


Assuntos
Metais Pesados , Fósforo , Cloro , Pirólise , Metais Pesados/química , Carvão Vegetal/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA