Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33848272

RESUMO

Hypothalamic feeding circuits have been identified as having innate synaptic plasticity, mediating adaption to the changing metabolic milieu by controlling responses to feeding and obesity. However, less is known about the regulatory principles underlying the dynamic changes in agouti-related protein (AgRP) perikarya, a region crucial for gating of neural excitation and, hence, feeding. Here we show that AgRP neurons activated by food deprivation, ghrelin administration, or chemogenetics decreased their own inhibitory tone while triggering mitochondrial adaptations in neighboring astrocytes. We found that it was the inhibitory neurotransmitter GABA released by AgRP neurons that evoked this astrocytic response; this in turn resulted in increased glial ensheetment of AgRP perikarya by glial processes and increased excitability of AgRP neurons. We also identified astrocyte-derived prostaglandin E2, which directly activated - via EP2 receptors - AgRP neurons. Taken together, these observations unmasked a feed-forward, self-exciting loop in AgRP neuronal control mediated by astrocytes, a mechanism directly relevant for hunger, feeding, and overfeeding.


Assuntos
Proteína Relacionada com Agouti , Astrócitos/metabolismo , Fome , Hipotálamo/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Prostaglandina E Subtipo EP2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA