Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Oncol ; 12(9): 1526-1539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055072

RESUMO

Pancreatic cancer is one of the most difficult cancers to cure due to the lack of early diagnostic tools and effective therapeutic agents. In this study, we aimed to isolate new bioactive compounds that effectively kill pancreatic ductal adenocarcinoma (PDAC) cells, but not untransformed, human pancreatic ductal epithelial (HPDE) cells. To this end, we established four primary PDAC cell lines and screened 4141 compounds from four bioactive-compound libraries. Initial screening yielded 113 primary hit compounds that caused over a 50% viability reduction in all tested PDAC cells. Subsequent triplicate, dose-dependent analysis revealed three compounds with a tumor cell-specific cytotoxic effect. We found that these three compounds fall into a single category of thiopurine biogenesis. Among them, 6-thioguanine (6-TG) showed an IC50 of 0.39-1.13 µm toward PDAC cells but had no effect on HPDE cells. We propose that this cancer selectivity is due to differences in thiopurine methyltransferase (TPMT) expression between normal and cancer cells. This enzyme is responsible for methylation of thiopurine, which reduces its cytotoxicity. We found that TPMT levels were lower in all four PDAC cell lines than in HPDE or Panc1 cells, and that knockdown of TPMT in HPDE or Panc1 cells sensitized them to 6-TG. Lastly, we used a patient-derived xenograft model to confirm that 6-TG has a significant antitumor effect in combination with gemcitabine. Overall, our study presents 6-TG as a strong candidate for use as a therapeutic agent against PDAC with low levels of TPMT.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Tioguanina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/enzimologia , Linhagem Celular Tumoral , Desoxicitidina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metiltransferases/biossíntese , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
2.
Artigo em Inglês | MEDLINE | ID: mdl-28096884

RESUMO

Annona muricata, commonly known as Graviola, has been utilized as a traditional medicine to treat various human diseases. The aim of this study was to examine the immune-enhancing activity of Graviola leaf extracts in RAW 264.7 macrophage cells. Active ingredients in Graviola leaf extracts (GE) were identified as kaempferol-3-O-rutinoside and quercetin-3-O-rutinoside by LC-MS/MS. When treated with steam or 50% ethanol GE, cell morphology was altered due to initiation of cell differentiation. While the cell viability was not altered by the steam GE, it was reduced by the ethanol GE. Both steam and ethanol GE induced the transcriptional expression of cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1ß, but only the steam extract upregulated inducible nitric oxide synthase (iNOS). In consistence with mRNA expression, the production of TNF-α and nitrite was elevated by both steam and ethanol extracts of Graviola leaves. This is mainly due to activation of mitogen-activated protein (MAP) kinase signaling pathways. These results suggest that Graviola leaves enhance immunity by activation of the MAP kinase pathways. These bioactive properties of Graviola indicate its potential as a health-promoting ingredient to boost the immune system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA