Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMB Rep ; 56(10): 545-550, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574806

RESUMO

Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomyinduced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 545-550].


Assuntos
NF-kappa B , Osteoporose , Humanos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Diferenciação Celular , Osteoporose/metabolismo
2.
Exp Mol Med ; 50(11): 1-16, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30393382

RESUMO

Supplementation of mesenchymal stem cells (MSCs) at sites of bone resorption is required for bone homeostasis because of the non-proliferation and short lifespan properties of the osteoblasts. Calcium ions (Ca2+) are released from the bone surfaces during osteoclast-mediated bone resorption. However, how elevated extracellular Ca2+ concentrations would alter MSCs behavior in the proximal sites of bone resorption is largely unknown. In this study, we investigated the effect of extracellular Ca2+ on MSCs phenotype depending on Ca2+ concentrations. We found that the elevated extracellular Ca2+ promoted cell proliferation and matrix mineralization of MSCs. In addition, MSCs induced the expression and secretion of osteopontin (OPN), which enhanced MSCs migration under the elevated extracellular Ca2+ conditions. We developed in vitro osteoclast-mediated bone resorption conditions using mouse calvaria bone slices and demonstrated Ca2+ is released from bone resorption surfaces. We also showed that the MSCs phenotype, including cell proliferation and migration, changed when the cells were treated with a bone resorption-conditioned medium. These findings suggest that the dynamic changes in Ca2+ concentrations in the microenvironments of bone remodeling surfaces modulate MSCs phenotype and thereby contribute to bone regeneration.


Assuntos
Cálcio/farmacologia , Movimento Celular , Proliferação de Células , Células-Tronco Mesenquimais/efeitos dos fármacos , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteopontina/genética , Osteopontina/metabolismo
3.
Mol Carcinog ; 55(5): 611-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25788004

RESUMO

Current treatment for leukemia largely depends on chemotherapy. Despite the progress in treatment efficacy of chemotherapy, a poor outcome consequent upon chemoresistance against conventional anti-cancer drugs still remains to be solved. In this study, we report 5-diphenylacetamido-indirubin-3'-oxime (LDD398) as a novel mitochondria-targeting anti-leukemic agent, which is a derivative of indirubin used in traditional medicine. Treatment with LDD398 resulted in caspase activation, cell death, and growth arrest at G2/M phases in leukemia cells. Interestingly, LDD398 quickly collapsed mitochondrial membrane potential (MMP) within 1 h, accompanied by cytochrome c release into cytosol and severe depletion of cellular ATP. However, the LDD398-induced cellular events was significantly mitigated by blockage of mitochondrial permeability transition pore (MPTP) opening with chemical and genetic modifications, strongly supporting that LDD398 executes its anti-leukemic activity via an inappropriate opening of MPTP and a consequent depletion of ATP. The most meaningful finding was the prominent effectiveness of LDD398 on primary leukemia cells and also on malignant leukemia cells resistant to anticancer drugs. Our results demonstrate that, among a series of indirubin derivatives, LDD398 induces leukemia cell death via a different mode from indirubin or conventional chemotherapeutics, and can be employed as a potent anti-cancer agent in the treatment for newly diagnosed and relapsed leukemia.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Leucemia Mieloide/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Oximas/farmacologia , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial
4.
Arch Pharm Res ; 38(11): 2020-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25956697

RESUMO

Sesquiterpene lactone compounds have received considerable attention in pharmacological research due to their therapeutic effects including anti-cancer and anti-inflammatory activities. In this report, we investigated the effect of arsantin, a sesquiterpene lactone compound present in Artemisia santolina, on cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system. Arsantin significantly induced HL-60 cell differentiation in a concentration-dependent manner. Cytofluorometric analysis indicated that arsantin induced HL-60 cell differentiation predominantly into granulocytes. Both PKC and MAPK inhibitors suppressed the HL-60 cell differentiation induced by arsantin. Moreover, treatment with arsantin increased protein levels of PKCα and PKCßII isoforms, and also induced increased protein levels and phosphorylation form of MAPKs in HL-60 cells. Importantly, arsantin synergistically enhanced differentiation of HL-60 cells in a dose-dependent manner when combined with either low doses of 1,25-(OH)2D3 or ATRA. The ability to enhance the differentiation potential of 1,25-(OH)2D3 or ATRA by arsantin may improve outcomes in the therapy of acute promyelocytic leukemia.


Assuntos
Artemisia/química , Diferenciação Celular/efeitos dos fármacos , Lactonas/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Sesquiterpenos/farmacologia , Calcitriol/administração & dosagem , Calcitriol/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HL-60 , Humanos , Lactonas/administração & dosagem , Lactonas/isolamento & purificação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos/isolamento & purificação , Tretinoína/administração & dosagem , Tretinoína/farmacologia
5.
Int J Oncol ; 44(3): 970-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24398846

RESUMO

All-trans retinoic acid (ATRA) is one of the most useful drugs in the treatment for acute promyelocytic leukemia (APL), but its adverse effects, which include drug resistance and hypercalcemia are obstacles to achieving complete remission. Our previous study showed that some sesquiterpene lactones (STLs), i.e., helenalin (HE) and parthenolide (PA) but not sclareolide (SC), enhance ATRA-induced differentiation of HL-60 APL cells with no unexpected effects, but the precise mechanism on underlying this synergism is not yet fully understood. In this study, we investigated the distinctive transcriptional profile of cells treated with effective STL compounds, which were identified by comparing the profile with that of cells treated with SC. Genome-wide approaches using cDNA microarrays showed that co-treatment with the differentiation-enhancing STLs HE and PA maximized the transcriptional variation regulated by the suboptimal concentration of ATRA in HL-60 cells. Of the genes of interest, asparagine synthetase was remarkably downregulated by ATRA co-treated with either HE or PA, but not with SC. In an additional analysis for the role of asparagine synthetase, ATRA-mediated HL-60 cell differentiation was enhanced when asparagine in the culture media was depleted by an addition of L-asparaginase, indicating that downregulation of asparagine synthetase gene expression may be involved in the enhanced cell differentiation by STL compounds. These results provide useful insight into differentiation-inducing therapy in the treatment of leukemia.


Assuntos
Aspartato-Amônia Ligase/genética , Diferenciação Celular/efeitos dos fármacos , Leucemia Promielocítica Aguda/tratamento farmacológico , Receptores do Ácido Retinoico/genética , Asparagina/metabolismo , Aspartato-Amônia Ligase/biossíntese , Diferenciação Celular/genética , Meios de Cultura , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptores do Ácido Retinoico/metabolismo , Sesquiterpenos/administração & dosagem , Sesquiterpenos de Guaiano , Tretinoína/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA