Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 2): 114586, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272598

RESUMO

Phosphorus speciation in the sediments is regulated by a series of physicochemical and microbial processes, and directly affects water phosphorus pool. However, the influence of culture activities and microbial metabolism on the sedimentary phosphorus speciation is poorly studied. In this study, we compared the abundance of distinguishable phosphorus phases and other physicochemical properties of sediments from oyster-farming areas and reference areas. The Geochip 5.0 technique was introduced to reveal the microbiological mechanisms of phosphorus metabolic alteration. The results showed that oyster culture enhanced the bioavailability of phosphorus in sediments. The free organic phosphorus was reduced significantly, whereas the free inorganic phosphorus and iron-bound phosphorus greatly increased in the oyster culture area (P ≤ 0.05). Moreover, the results of Geochip showed that the oyster culture reshaped the microbial network structure in sediments, with typical phosphate-solubilizing and phosphorus-accumulating microbes being enriched by 17.76% and 10.60%. The abundance of functional genes related to the main phosphorus cycle pathways were also significantly increased (P ≤ 0.05) in the culture area compared to the reference area. This work suggested that oyster culture can greatly improve the microbial phosphorus metabolism and provided insights into the environmental recovery and reconstruction from marine aquaculture activities.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Fósforo/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Aquicultura , China , Poluentes Químicos da Água/análise
2.
Water Res ; 183: 116020, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653764

RESUMO

Elucidating the interactions between algae and associated microbial communities is critical for understanding the mechanisms that mediate the dynamic of harmful algal blooms (HABs) in marine environment. However, the microbial functional profiles and their biogeochemical potential in HABs process remains elusive, especially during a complete natural HAB cycle. Here, we used pyrosequencing and functional gene array (GeoChip) to investigate microbial community dynamics and metabolic potential during a natural dinoflagellate (Noctiluca scintillans) bloom. The results shown that bacterioplankton exhibited significant temporal heterogeneity over the course of the bloom stages. Microbial succession was co-driven by environmental parameters and biotic interactions. The functional analysis revealed significant variations in microbial metabolism during matter cycling. At bloom onset-stage, metabolic potential associated with iron oxidation and transport was elevated. Carbon fixation and degradation, denitrification, phosphorus acquisition, and sulfur transfer/oxidation were significantly enhanced at the plateau stage. During the decline and terminal stages, oxidative stress, lysis of compounds, and toxin degradation & protease synthesis increased. This work reveal phycosphere microorganisms can enhanced organic C decomposition capacity, altered N assimilation rate and S/P turnover efficiency, and balancing of the Fe budget during HAB process. The ecological linkage analysis has further shown that microbial composition and functional potential were significantly linked to algal blooms occurrence. It suggest that structural variability and functional plasticity of microbial communities influence HAB trajectory.


Assuntos
Dinoflagellida , Microbiota , Organismos Aquáticos , Proliferação Nociva de Algas , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA