Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(6): e2205313, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461734

RESUMO

Electrochemical Nc reduction has been regarded as one of the most promising approaches to producing ammonia under mild conditions, but there are remaining pressing challenges in improving the reaction rate and efficiency. Herein, an unconventional galvanic replacement reaction is reported to fabricate a unique hierarchical structure composed of Fe3 O4 -CeO2 bimetallic nanotubes covered by Fe2 O3 ultrathin nanosheets. Control experiments reveal that CeO2 species play the essential role of stabilizer for Fe2+ cations. Compared with bare CeO2 and Fe2 O3 nanotubes, the as-obtained Fe2 O3 /Fe3 O4 -CeO2 possesses a remarkably enhanced NH3 yield rate (30.9 µg h-1 mgcat -1 ) and Faradaic efficiency (26.3%). The enhancement can be attributed to the hierarchical feature that makes electrodes more easily to contact with electrolytes. More importantly, as verified by density functional theory calculations, the generation of Fe2 O3 -Fe3 O4 heterogeneous junctions can efficiently optimize the reaction pathways, and the energy barrier of the potential determining step (the *N2 hydrogenates into *N*NH) is significantly decreased.

2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409266

RESUMO

Orange (OR) is a DnaJ-like zinc finger protein with both nuclear and plastidial localizations. OR, and its orthologs, are highly conserved in flowering plants, sharing a characteristic C-terminal tandem 4× repeats of the CxxCxxxG signature. It was reported to trigger chromoplast biogenesis, promote carotenoid accumulation in plastids of non-pigmented tissues, and repress chlorophyll biosynthesis and chloroplast biogenesis in the nucleus of de-etiolating cotyledons cells. Its ectopic overexpression was found to enhance plant resistance to abiotic stresses. Here, we report that the expression of OR in Arabidopsis thaliana was upregulated by drought treatment, and seedlings of the OR-overexpressing (OE) lines showed improved growth performance and survival rate under drought stress. Compared with the wild-type (WT) and OR-silencing (or) lines, drought-stressed OE seedlings possessed lower contents of reactive oxygen species (such as H2O2 and O2-), higher activities of both superoxide dismutase and catalase, and a higher level of proline content. Our enzymatic assay revealed a relatively higher activity of Δ1-pyrroline-5-carboxylate synthase (P5CS), a rate-limiting enzyme for proline biosynthesis, in drought-stressed OE seedlings, compared with the WT and or lines. We further demonstrated that the P5CS activity could be enhanced by supplementing exogenous OR in our in vitro assays. Taken together, our results indicated a novel contribution of OR to drought tolerance, through its impact on proline biosynthesis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP40 , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Prolina/metabolismo , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico , Dedos de Zinco
3.
Adv Mater ; 33(49): e2103936, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34596931

RESUMO

Metal phosphorus-based nanomaterials (Metal-P NMs) including metal phosphate nanomaterials, metal phosphide nanomaterials, and metal-black phosphorus (Metal-BP) nanocomposite are widely used in the field of biomedicine owing to their excellent physical and chemical properties, biocompatibility, and biodegradability. In recent years, metal phosphate nanomaterials and Metal-BP nanocomposite acted as medicine delivery system have made breakthroughs in tumor diagnosis including magnetic resonance imaging, fluorescence imaging, photoacoustic imaging, nuclear imaging, and therapies including chemotherapy, gene therapy, photothermal therapy, photodynamic therapy, and radiation therapy. Metal phosphate nanomaterials have good biodegradability, especially calcium-based metal phosphate nanomaterials can be dissolved into nontoxic ions and participate in the metabolisms of normal organs. Compared with metal phosphate nanomaterials, metal phosphide nanomaterials have excellent optical, magnetic, and catalytic properties, which can be used as multifunctional diagnostic nanoplatforms and therapeutic agents for chemodynamic therapy, photothermal therapy, or immunotherapy. The latest developments in Metal-P NMs, covering the range of preparation methods and biological applications, such as serving as drug carriers, tumor diagnosis, and therapy, are focused. All in all, the current trends, key issues, future prospects and challenges of Metal-P NMs are concluded and discussed, which are important for the development of this research field and shining more lights on this direction.


Assuntos
Nanocompostos , Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fosfatos , Fósforo/química , Fotoquimioterapia/métodos
4.
Adv Mater ; 31(46): e1904836, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31566280

RESUMO

Photothermal therapy triggered by near-infrared light in the second biowindow (NIR-II) has attracted extensive interest owing to its deeper penetration depth of biological tissue, lower photon scattering, and higher maximum permissible exposure. In spite of noble metals showing great potential as the photothermal agents due to the tunable localized surface plasmon resonance, the biological applications of platinum are rarely explored. Herein, a monocomponent hollow Pt nanoframe ("Pt Spirals"), whose superstructure is assembled with three levels (3D frame, 2D layered shells, and 1D nanowires), is reported. Pt Spirals exhibit outstanding photothermal conversion efficiency (52.5%) and molar extinction coefficients (228.7 m2 mol-1 ) in NIR-II, which are much higher than those of solid Pt cubes. Simulations indicate that the unique superstructure can be a significant cause for improving both adsorption and the photothermal effect simultaneously in NIR-II. The excellent photothermal effect is achieved and subsequently verified in in vitro and in vivo experiments, along with superb heat-resistance properties, excellent photostability, and a prominent effect on computed tomography (CT) imaging, demonstrating that Pt Spirals are promising as effective theranostic platforms for CT imaging-guided photothermal therapy.


Assuntos
Absorção Fisico-Química , Raios Infravermelhos , Nanomedicina/métodos , Fototerapia/métodos , Platina/química , Temperatura , Animais , Linhagem Celular Tumoral , Camundongos , Nanoestruturas/química
5.
Nano Lett ; 19(8): 5093-5101, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31242732

RESUMO

Due to the limitation of inorganic nanomaterials in present clinical applications induced by their inherent nonbiodegradability and latent long-term side effects, we successfully prepared double switch degradable and clearable trinickel monophosphide porous hollow nanospheres (NiP PHNPs) modified with bovine serum albumin (BSA). Attributed to their acidic and oxidative double switch degradation capacities, NiP PHNPs can be effectively excreted from mice without long-term toxicity. Moreover, because of the paramagnetic and high molar extinction coefficient property resulting from the strong absorption in the second near-infrared light (NIR II) biowindow, NiP PHNPs have potential to be used for photoacoustic imaging (PAI) and T1-weighted magnetic resonance imaging (MRI) guided photothermal ablation of tumors in the NIR II biowindow. Specifically, it is interesting that the hollow structure and acidic degradation property enable NiP PHNPs to act as intelligent drug carriers with an on-demand release ability. These findings highlight the great potential of NiP PHNPs in the cancer theranostics field and inspire us to further broaden the bioapplications of transition metal phosphides.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Nanosferas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fosfinas/uso terapêutico , Animais , Células HeLa , Humanos , Hipertermia Induzida , Imageamento por Ressonância Magnética , Camundongos , Imagem Multimodal , Nanosferas/ultraestrutura , Técnicas Fotoacústicas , Fototerapia , Porosidade , Nanomedicina Teranóstica
6.
Small ; 14(7)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29325210

RESUMO

Design of new nanoagents that intrinsically have both diagnostic imaging and therapeutic capabilities is highly desirable for personalized medicine. In this work, a novel nanotheranostic agent is fabricated based on polydopamine (PDA)-functionalized Co-P nanocomposites (Co-P@PDA) for magnetic resonance imaging (MRI)-guided combined photothermal therapy and chemotherapy. The ultrahigh relaxivity of 224.61 mm-1 s-1 can enable Co-P@PDA to be applied as an excellent contrast agent for MRI in vitro and in vivo, providing essential and comprehensive information for tumor clinical diagnosis. Moreover, Co-P@PDA exhibit excellent photothermal performance owing to the strong near-infrared (NIR) absorbance of both Co-P nanocomposite and PDA. Highly effective ablation of tumors is achieved in a murine tumor model because the NIR laser not only induces photothermal effects but also triggers the chemotherapeutic drug on-demand release, which endows the Co-P@PDA with high curative effects but little toxicity and few side effects. These findings demonstrate that Co-P@PDA are promising agents for highly effective and precise antitumor treatment and warrant exploration as novel theranostic nanoagents with good potential for future clinical translation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanocompostos/química , Fototerapia/métodos , Meios de Contraste/química , Células HeLa , Humanos , Hipertermia Induzida/métodos , Indóis/química , Polímeros/química
7.
Nanoscale ; 10(2): 825-831, 2018 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-29260827

RESUMO

Photothermal therapy (PTT) has attracted increasing interest and become widely used in cancer therapy owing to its noninvasiveness and low level of systemic adverse effects. However, there is an urgent need to develop biocompatible and multifunctional PTT agents with high photothermal conversion efficiency. Herein, biocompatible Cu-Ag2S/PVP nanoparticles (NPs) with strong near-infrared absorption and high photothermal conversion efficiency were successfully synthesized for high-performance photoacoustic (PA) imaging-guided PTT in vivo. The novel Cu-Ag2S/PVP NPs feature high photothermal conversion efficiency (58.2%) under 808 nm light irradiation, noticeably higher than those of most reported PTT agents. Because of their good dispersibility, Cu-Ag2S/PVP NPs passively accumulate within tumors via the enhanced permeability and retention effect, which can be confirmed by PA imaging, photothermal performance, and biodistribution in vivo. Furthermore, Cu-Ag2S/PVP NPs are thoroughly cleared through feces and urine within seven days, indicating a high level of biosafety for further potential clinical translation.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias Experimentais/terapia , Técnicas Fotoacústicas , Fototerapia , Animais , Linhagem Celular Tumoral , Cobre , Camundongos , Neoplasias Experimentais/diagnóstico por imagem , Prata , Nanomedicina Teranóstica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA