Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chin Med ; 19(1): 49, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519984

RESUMO

Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.

2.
Nutrition ; 116: 112221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832169

RESUMO

OBJECTIVE: The aim of this study was to investigate the effects of soybean, medium-chain triacylglycerols (MCTs), olive oil, and fish oil (SMOF) on short-term clinical outcomes, physical growth, and extrauterine growth retardation (EUGR) in very preterm infants. METHODS: This was a multicenter retrospective cohort study of very preterm infants hospitalized in neonatal intensive care units at five tertiary hospitals in China between January 2021 and December 2021. According to the type of fat emulsion used in parenteral nutrition (PN), eligible very preterm infants were divided into the MCTs/long-chain triacylglycerol (MCT/LCT) group and SMOF group. Change in weight z-score (weight Δz) between measurements at birth and at 36 wk of postmenstrual age or at discharge, the incidence of EUGR, and short-term clinical outcomes between the two groups were compared and analyzed. RESULTS: We enrolled 409 very preterm infants, including 205 in the MCT/LCT group and 204 in the SMOF group. Univariate analysis showed that infants in the SMOF group had significantly longer duration of invasive mechanical ventilation and PN, longer days to reach total enteral nutrition, and a higher proportion of maximum weight loss than those in MCT/LCT group (all P < 0.05). After adjusting for the confounding variables, multifactorial logistic regression analysis of short-term clinical outcomes showed that SMOF had protective effects on PN-associated cholestasis (odds ratio [OR], 0.470; 95% confidence interval [CI], 0.266-0.831) and metabolic bone disease of prematurity (OR, 0.263; 95% CI, 0.078-0.880). Additionally, SMOF was an independent risk factor for lower weight growth velocity (ß = -0.733; 95% CI, -1.452 to -0.015) but had no effect on the incidence of EUGR (OR, 1.567; 95% CI, 0.912 to -2.693). CONCLUSION: Compared with MCT/LCT, SMOF can reduce the risk for PN-associated cholestasis and metabolic bone disease of prematurity in very preterm infants and has a negative effect on growth velocity but has no effect on the incidence of EUGR.


Assuntos
Doenças Ósseas Metabólicas , Colestase , Doenças do Prematuro , Lactente , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Emulsões , Estudos Retrospectivos , Óleo de Soja , Óleos de Peixe , Retardo do Crescimento Fetal , Doenças do Prematuro/epidemiologia , Doenças do Prematuro/prevenção & controle , Triglicerídeos , Emulsões Gordurosas Intravenosas/efeitos adversos
3.
Eur J Clin Nutr ; 77(8): 823-832, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37138099

RESUMO

OBJECTIVE: This study compared the clinical effects of two different lipid emulsions in premature infants with gestational age < 32 weeks (VPI) or birth weight < 1500 g (VLBWI) to provide an evidence-based medicine basis for optimizing intravenous lipid emulsion. METHODS: This was a prospective multicenter randomized controlled study. A total of 465 VPIs or VLBWIs, admitted to the neonatal intensive care unit of five tertiary hospitals in China from March 1, 2021 to December 31, 2021, were recruited. All subjects were randomly allocated into two groups, namely, medium-chain triglycerides/long-chain triglycerides (MCT/LCT) group (n = 231) and soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) group (n = 234). Clinical features, biochemical indexes, nutrition support therapy, and complications were analyzed and compared between the two groups. RESULTS: No significant differences were found in perinatal data, hospitalization, parenteral and enteral nutrition support between the two groups (P > 0.05). Compared with the MCT/LCT group, the incidence of neonates with a peak value of total bilirubin (TB) > 5 mg/dL (84/231 [36.4% vs. 60/234 [25.6%]), a peak value of direct bilirubin (DB) ≥ 2 mg/dL (26/231 [11.3% vs. 14/234 [6.0%]), a peak value of alkaline phosphatase (ALP) > 900 IU/L (17/231 [7.4% vs. 7/234 [3.0%]), and a peak value of triglycerides (TG) > 3.4 mmol/L (13/231 [5.6% vs. 4/234[1.7%]]) were lower in the SMOF group (P < 0.05). Univariate analysis showed that in the subgroup analysis of < 28 weeks, the incidence of parenteral nutrition-associated cholestasis (PNAC) and metabolic bone disease of prematurity (MBDP) were lower in the SMOF group (P = 0.043 and 0.029, respectively), whereas no significant differences were present in the incidence of PNAC and MBDP between the two groups at > 28 weeks group (P = 0.177 and 0.991, respectively). Multivariate logistic regression analysis revealed that the incidence of PNAC (aRR: 0.38, 95% confidence interval [CI]: 0.20-0.70, P = 0.002) and MBDP (aRR: 0.12, 95% CI: 0.19-0.81, P = 0.029) in the SMOF group were lower than that in the MCT/LCT group. In addition, no significant differences were recorded in the incidence of patent ductus arteriosus, feeding intolerance, necrotizing enterocolitis (Bell's stage ≥ 2), late-onset sepsis, bronchopulmonary dysplasia, intraventricular hemorrhage, periventricular leukomalacia, retinopathy of prematurity and extrauterine growth retardation between the two groups (P > 0.05). CONCLUSIONS: The application of mixed oil emulsion in VPI or VLBWI can reduce the risk of plasma TB > 5 mg/dL, DB ≥ 2 mg/dL, ALP > 900 IU/L, and TG > 3.4 mmol/L during hospitalization. SMOF has better lipid tolerance, reduces the incidence of PNAC and MBDP, and exerts more benefits in preterm infants with gestational age < 28 weeks.


Assuntos
Colestase , Recém-Nascido Prematuro , Recém-Nascido , Humanos , Estudos Prospectivos , Emulsões Gordurosas Intravenosas/efeitos adversos , Óleo de Soja/efeitos adversos , Azeite de Oliva , Óleos de Peixe , Colestase/etiologia , Triglicerídeos , Bilirrubina , Recém-Nascido de muito Baixo Peso
4.
Front Pharmacol ; 14: 1129817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007037

RESUMO

Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases. Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to "baicalin", "Scutellaria baicalensis Georgi", "COVID-19", "acute lung injury", "pulmonary arterial hypertension", "asthma", "chronic obstructive pulmonary disease", "pulmonary fibrosis", "lung cancer", "pharmacokinetics", "liposomes", "nano-emulsions", "micelles", "phospholipid complexes", "solid dispersions", "inclusion complexes", and other terms. Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-ß/Smad, Nrf2/HO-1, and ERK/GSK3ß pathways. Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.

5.
Phytomedicine ; 112: 154707, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805483

RESUMO

BACKGROUND: Qimai Feiluoping decoction (QM), a Traditional Chinese Medicine formula, has been included in rehabilitation program for functional disorders of discharged COVID-19 patients. QM has been proved to effectively improve the clinical symptoms and imaging signs of PF in COVID-19 convalescent patients. PURPOSE: This study to explore the pharmacological effect of QM against PF from the perspectives of imaging, pathological staining, and molecular mechanisms, and identify possible active components. METHODS: Micro-CT imaging and immunohistochemical staining were investigated to verify the therapeutic effect of QM in the bleomycin (BLM)-induced PF mouse model. The 4D-label-free proteomics analysis of lung tissues was then conducted to explore the novel mechanisms of QM against PF, which were further validated by a series of experiments. The possible components of QM in plasma and lung tissues were identified with UHPLC/IM-QTOF-MS analysis. RESULTS: The results from micro-CT imaging and pathological staining revealed that QM treatment can inhibit BLM-induced lung injury, extracellular matrix accumulation and TGF-ß expression in the mouse model with PF. The 4D-label-free proteomics analysis demonstrated that the partial subunit proteins of mitochondrial complex I and complex II might be potential targets of QM against PF. Furthermore, QM treatment can inhibit BLM-induced mitochondrial ROS content to promote ATP production and decrease oxidative stress injury in the mouse and cell models of PF, which was mediated by the inhibition of mitochondrial complex I. Finally, a total of 13 protype compounds and 15 metabolites from QM in plasma and lung tissues were identified by UHPLC/IM-QTOF-MS, and liquiritin and isoliquiritigenin from Glycyrrhizae radix et rhizoma could be possible active compounds against PF. CONCLUSION: It concludes that QM treatment could treat PF by inhibiting mitochondrial complex I-mediated mitochondrial oxidated stress injury, which could offer new insights into the pharmacological mechanisms of QM in the clinical application of PF patients.


Assuntos
COVID-19 , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Bleomicina/toxicidade , COVID-19/patologia , Pulmão/patologia , Estresse Oxidativo
6.
Food Funct ; 13(17): 8829-8849, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35920178

RESUMO

Obesity is a widespread medical problem, for which many drugs have been developed, each with its own limitations. Orlistat, a lipase inhibitor, functions as a fat absorption blocker and is a widely used over-the-counter drug in China. Psyllium husk, in contrast, is a food source rich in dietary fibre and is beneficial for weight loss because it reduces appetite. Here, it was investigated how psyllium husk treatments affect mice with a high-fat diet (HFD)-induced obesity, using obesity-related indices, metabolism indices, and gut microbiota, compared to orlistat treatments. Orlistat had a greater effect on weight loss, whereas psyllium husk had a greater effect at reducing serum and liver cholesterol and triglyceride levels. Treatments had similar effects on controlling the body fat rate, the expression level of farnesoid X receptor, sterol 27-hydroxylase and oxysterol 7-hydroxylase (CYP7B1) in the liver, and the regulation of major bile acids such as cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid in faecal content. However, the expression of CYP7A1 in the liver and the structures of faecal bile acids were different between the two drugs. Furthermore, although they also had similar effects on the gut microbiota at the phylum level, there were differences at the genus level for Roseburia, Bacteroides, Faecalibacterium, Coprobacillus, and Akkernansia, which led to the difference in the serum lipopolysaccharide (LPS) level. Orlistat increased the food intake of the obese mice that were fed a HFD, which led to an increase in water intake, serum triglyceride levels, and lower glucose tolerance. Although orlistat is considered a suitable drug for weight loss, psyllium husk is a comparatively more cost-effective choice for ameliorating hypercholesterolemia and non-alcoholic fatty liver disease caused by a HFD.


Assuntos
Fármacos Antiobesidade , Hipercolesterolemia , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Psyllium , Animais , Fármacos Antiobesidade/farmacologia , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo , Orlistate , Psyllium/metabolismo , Triglicerídeos/metabolismo , Redução de Peso
7.
Front Public Health ; 10: 825874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719675

RESUMO

Survey-based research has provided us with breadth regarding perceived benefits and barriers to COVID-19 vaccination among Chinese people. Most such research has been conducted within hypothetical COVID-19 vaccine contexts, and few studies are specific to young adults aged 18-40, a pivotal target population for COVID-19 vaccination. Now that the Sinopharm and Sinovac COVID-19 vaccines have been conditionally approved in China, qualitative investigation of young adults' perceptions of benefits and barriers to taking them is warranted. Such research may suggest potential candidate themes in the COVID-19 vaccination promotional messages targeting this population. Through in-depth interviews with 55 Chinese young adults and thematic analysis guided by the health belief model, social benefits and worry reduction emerged as significant positive factors in young adults' intention to vaccinate. Several novel barriers emerged as well, including perceptions that the vaccines' advantages are weak relative to non-medical preventions and beliefs regarding Ti Zhi (the individual human constitution), which confused some participants about their suitability for vaccination. The study also identified two modifying factors, trust in the government and perceived vaccine information insufficiency, both of which appeared to be indirectly associated with vaccination intention by augmenting the perceived barriers. The results suggest that more attention could be paid to young adults' cultural background when developing relevant health communications.


Assuntos
Vacinas contra COVID-19 , COVID-19 , COVID-19/prevenção & controle , China , Humanos , Intenção , Vacinação , Adulto Jovem
8.
Biomed Res Int ; 2022: 8752325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178456

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality and poor prognosis. The prognostic signatures related to conventional therapy response remain limited. The Wenfei Buqi Tongluo (WBT) formula, a traditional Chinese medicine (TCM) formula, has been widely utilized to treat respiratory diseases in China, which is particularly effective in promoting inflammatory absorption. In this study, we aim to explore the mechanism of the WBT formula in the inhibition of inflammatory response during IPF, based on network pharmacology and in vivo experiments. METHODS: Network pharmacology was applied to predict the changes of biological processes and potential pathways for the WBT formula against IPF. Histopathological changes, inflammatory factors (IL-6, IL-1ß, and TNF-α), and the proteins of the TLR4/MyD88/NF-κB pathway in bleomycin- (BLM-) induced mice model were examined by hematoxylin-eosin (H&E), Masson or immunohistochemistry staining, Western blot, and enzyme-linked immunosorbent assay analysis. RESULTS: A total of 163 possible components and 167 potential targets between the WBT formula and IPF were obtained. The enrichments of network pharmacology showed that inflammation response, TNF, and NF-κB pathways were involved in the treatment of WBT against IPF. The in vivo experiments indicated that the WBT formula could ameliorate inflammatory exudation and collagen deposition at a histopathology level in the BLM-induced mice model. The levels of IL-6, IL-1ß, and TNF-α were reduced after the WBT formula treatment. Moreover, the expressions of phosphorylated-NF-κB p65, TLR4, and MyD88 were significantly downregulated by the WBT formula, compared with the BLM-induced group. CONCLUSION: These results indicated that the WBT formula can suppress BLM-induced IPF in a mouse model by inhibiting the inflammation via the TLR4/MyD88/NF-κB pathway. This study provides a new insight into the molecular mechanisms of the WBT formula in the application at the clinic.


Assuntos
Fibrose Pulmonar Idiopática , NF-kappa B , Animais , Medicamentos de Ervas Chinesas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Pharmacol ; 12: 770197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925028

RESUMO

Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-ß signaling pathway. Finally, TGF-ß1-induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-ß1-induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-ß/Smad3 pathway.

10.
Front Pharmacol ; 12: 734450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512360

RESUMO

Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and ß-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-ß/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA