Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 128218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992933

RESUMO

Peucedanum praeruptorum Dunn, a traditional Chinese medicine rich in coumarin, belongs to the Apiaceae family. A high-quality assembled genome of P. praeruptorum is lacking, which has posed obstacles to functional identification and molecular evolution studies of genes associated with coumarin production. Here, a chromosome-scale reference genome of P. praeruptorum, an important medicinal and aromatic plant, was first sequenced and assembled using Oxford Nanopore Technologies and Hi-C sequencing. The final assembled genome size was 1.83 Gb, with a contig N50 of 11.12 Mb. The entire BUSCO evaluation and second-generation read comparability rates were 96.0 % and 99.31 %, respectively. Furthermore, 99.91 % of the genome was anchored to 11 pseudochromosomes. The comparative genomic study revealed the presence of 18,593 orthogroups, which included 476 species-specific orthogroups and 1211 expanded gene families. Two whole-genome duplication (WGD) events and one whole-genome triplication (WGT) event occurred in P. praeruptorum. In addition to the γ-WGT shared by core eudicots or most eudicots, the first WGD was shared by Apiales, while the most recent WGD was unique to Apiaceae. Our study demonstrated that WGD events that occurred in Apioideae highlighted the important role of tandem duplication in the biosynthesis of coumarins and terpenes in P. praeruptorum. Additionally, the expansion of the cytochrome P450 monooxygenase, O-methyltransferase, ATP-binding cassette (ABC) transporter, and terpene synthase families may be associated with the abundance of coumarins and terpenoids. Moreover, we identified >170 UDP-glucosyltransferase members that may be involved in the glycosylation post-modification of coumarins. Significant gene expansion was observed in the ABCG, ABCB, and ABCC subgroups of the ABC transporter family, potentially facilitating the transmembrane transport of coumarins after bolting. The P. praeruptorum genome provides valuable insights into the machinery of coumarin biosynthesis and enhances our understanding of Apiaceae evolution.


Assuntos
Apiaceae , Cumarínicos , Cumarínicos/química , Sistema Enzimático do Citocromo P-450/genética , Apiaceae/genética , Apiaceae/química , Metiltransferases/genética , Cromossomos
2.
Mitochondrial DNA B Resour ; 7(7): 1382-1383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923640

RESUMO

Exochorda racemosa (Lindl.) Rehd. is a traditional medicinal herb widely distributed in China. Here, we reported the complete chloroplast genome sequence of E. racemosa. The chloroplast genome (160,398 bp) was composed of four regions, with a large single-copy (LSC, 88,458 bp) region, a small single-copy (SSC, 19,190 bp) region, and two inverted repeat (IR, 26,375 bp) regions. The overall GC content was 36.48%. A total of 131 genes were predicted with 86 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The phylogenetic analysis showed that E. racemosa had a close relationship with E. serratifolia.

3.
Mitochondrial DNA B Resour ; 7(7): 1218-1220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837498

RESUMO

Paederia foetida L. belonging to Rubiaceae family is a perennial medicinal herb widely distributed in India and China. The first complete chloroplast genome sequence of P. foetida was assembled and characterized in this study. The total chloroplast genome was 153,591 bp in length with 37.74% GC content, composed of a large single-copy (LSC) region of 83,677 bp, a small single-copy (SSC) region of 16,888 bp and a pair of inverted repeat (IR) regions of 26,513 bp. The whole chloroplast genome encoded 133 genes, including 88 protein-coding genes, 37 tRNA genes and 8 rRNA genes. Phylogenetic analysis of 30 chloroplast genomes strongly suggested that P. foetida was closely related to P. scandens.

4.
Mitochondrial DNA B Resour ; 7(6): 1087-1089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756430

RESUMO

Rubia yunnanensis Diels, an important medicinal herb, is mainly distributed in Yunnan province, Southwest China. In this study, the complete chloroplast genome of R. yunnanensis was successfully sequenced. The assembled chloroplast genome was 155,108 bp in length with an overall GC content of 36.98%, including a pair of inverted repeat (IR) regions (26,573 bp, each), respectively, a large single-copy (LSC) region (84,848 bp) and a small single-copy (SSC) region (17,114 bp). The genome contained 131 genes, comprising 85 protein-coding genes, 37 tRNA genes, eight rRNA genes, and one pseudogene. The phylogenetic analysis indicated that R. yunnanensis was closely related to R. cordifolia.

5.
J AOAC Int ; 105(3): 928-933, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34954793

RESUMO

BACKGROUND: Peucedanum praeruptorum Dunn (PPD) is a traditional Chinese medical herb of high medical and economic value. However, PPD is often adulterated by inexpensive plants. OBJECTIVE: In order to establish an integrated and straightforward methodology to identify adulterated PPD products, hand-held near-infrared spectroscopy (NIRS) combined with chemical pattern recognition techniques was employed. METHOD: The standard normal variate (SNV) was used to preprocess the original near-infrared spectra. Principal component analysis (PCA), linear discriminant analysis (LDA), and partial least-squares regression analysis (PLSDA) were used to construct the recognition models. RESULTS: PCA analysis could not correctly distinguish PPD from non-PPD. However, based on absorbance in the spectral region of 1405-2442 nm and SNV pretreatment, the accuracy of the LDA model was above 90% at identifying genuine PPD. Compared with the LDA method, the PLSDA model is more stable and reliable, and its model prediction accuracy was 93.4%. CONCLUSION: The combination of NIRS and chemometric methods based on a hand-held near-infrared spectrometer is an efficient, nondestructive, and reliable method for validating traditional Chinese medicine PPD. HIGHLIGHTS: The advanced method based on a hand-held near-infrared spectrometer can be used for rapid identification and quality evaluation of PPD in the field, medicinal material markets, and points of sale.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Análise Discriminante , Análise dos Mínimos Quadrados , Análise de Componente Principal , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Mitochondrial DNA B Resour ; 6(11): 3283-3285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712813

RESUMO

Arisaema bockii Engler is a perennial herbaceous medicinal plant, which is widely distributed in many provinces in China such as Anhui, Jiangsu, and Zhejiang. In this study, the complete chloroplast genome sequence of A. bockii was assembled and characterized based on high-throughput sequencing data. The total length of chloroplast genome was 175,537 bp, including large single-copy (LSC) and small single-copy (SSC) regions of 98,870 bp and 23,345 bp, respectively, which were separated by a pair of 27,161 bp inverted repeat (IR) regions. The genome contained 129 genes, including 84 protein-coding genes, 36 tRNA genes, 8 rRNA genes, and one pseudogene. The overall GC content of the genome was 33.6%. A phylogenetic tree reconstructed by 30 chloroplast genomes revealed that A. bockii was mostly related to the same genus species A. ringens, A. franchetianum and A. erubescens. The work reported the first complete chloroplast genome of A. bockii, which may provide some useful information to the evolution of the family Araceae.

7.
Mitochondrial DNA B Resour ; 6(11): 3297-3299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712816

RESUMO

Arisaema heterophyllum Blume is a perennial medicinal herb widely distributed in China, Korea and Japan. In this study, the complete chloroplast genome sequence of A. heterophyllum was assembled and characterized based on high-throughput sequencing data. The whole chloroplast genome is 170,610 bp in length and contains 95,485 bp large single-copy (LSC) and 22,605 bp small single-copy (SSC) regions separated by a pair of 26,260 bp inverted repeat (IR) regions. It contained a total of 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, with an overall GC content of 34.5%. A phylogenetic tree reconstructed by 30 chloroplast genomes reveals that A. heterophyllum is mostly related to the same genus A. ringens, A. franchetianum and A. erubescens. The complete chloroplast genome of A. heterophyllum was the firstly reported and deposited at GenBank under accession number MZ424448.

8.
Zhongguo Zhong Yao Za Zhi ; 46(8): 1864-1868, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33982493

RESUMO

Dendrobium huoshanense is a precious medicinal plant belonging to Dendrobium of Orchidaceae. It is a special medicinal material and extremely scarce in Huoshan county, Anhui province. At present, D. huoshanense has been greatly protected, which also makes it possible to industrialize relying on tissue culture and artificial cultivation technology. Three main planting methods were utilized for cultivating D. huoshanense including facility cultivation, under forest cultivation and simulative habitat cultivation. Firstly, the three cultivation modes and technical characteristics of D. huoshanense were compared and analyzed, and it was found that the ecological environment of D. huoshanense cultivated in the simulated environment was closer to that of wild D. huoshanense. Secondly, based on comparing the characters and quality of three cultivation modes, the results showed that the shape of D. huoshanense cultivated in simulated environment was more similar to that of "grasshopper thigh" recorded in Bencao Jing Jizhu, and its quality was better than that of facilities and under forest cultivation. The comprehensive benefit comparison of three modes showed that the simulated cultivation had high income, the lowest input-output ratio and significant economic benefit. The quality of cultivated D. huoshanense was further evaluated from four aspects of "excellent environment" "excellent shape" "high quality" "excellent effect", which summarized the comprehensive advantages of simulative habitat cultivation of D. huoshanense as follows: the original habitat and site environment of simulated wild D. huoshanense, the closer shape to the wild, the more content of main medicinal components, and higher economic benefit and better efficacy. The quality of D. huoshanense was improved by the use of simulative habitat cultivation, which has practical significance to guide its large-scale cultivation.


Assuntos
Dendrobium , Plantas Medicinais , Ecossistema , Florestas
9.
Mitochondrial DNA B Resour ; 6(3): 880-882, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33796666

RESUMO

Magnolia officinalis Rehd. et Wils. is an important traditional Chinese herbal medicine and widely distributed in the south of Yangtze River in China. In this study, the complete chloroplast genome sequence of wild M. officinalis was assembled and characterized from high-throughput sequencing data. The chloroplast genome was 160,009 bp in length, consisting of large single-copy (LSC) and small single-copy (SSC) regions of 88,134 bp and 18,739 bp, respectively, which were separated by a pair of 26,568 bp inverted repeat (IR) regions. The genome is predicted to contain 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content of the genome is 39.3%. A phylogenetic tree reconstructed by 86 chloroplast genomes reveals that M. officinalis is mostly related to cultivated M. officinalis, M. obovata and M. tripetala.

10.
Genome Biol Evol ; 12(12): 2486-2490, 2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33045048

RESUMO

Dendrobium huoshanense is used to treat various diseases in traditional Chinese medicine. Recent studies have identified active components. However, the lack of genomic data limits research on the biosynthesis and application of these therapeutic ingredients. To address this issue, we generated the first chromosome-level genome assembly and annotation of D. huoshanense. We integrated PacBio sequencing data, Illumina paired-end sequencing data, and Hi-C sequencing data to assemble a 1.285 Gb genome, with contig and scaffold N50 lengths of 598 kb and 71.79 Mb, respectively. We annotated 21,070 protein-coding genes and 0.96 Gb transposable elements, constituting 74.92% of the whole assembly. In addition, we identified 252 genes responsible for polysaccharide biosynthesis by Kyoto Encyclopedia of Genes and Genomes functional annotation. Our data provide a basis for further functional studies, particularly those focused on genes related to glycan biosynthesis and metabolism, and have implications for both conservation and medicine.


Assuntos
Dendrobium/genética , Genoma de Planta , Cromossomos de Plantas , Elementos de DNA Transponíveis , Medicina Tradicional Chinesa , Plantas Medicinais/genética , Valores de Referência
11.
Planta Med ; 86(13-14): 967-975, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31766070

RESUMO

The endophytic microbiome in medicinal plants is rich and diverse, but few studies have followed the endophytic microbiome of medicinal plants in different tissues with their growth. In this study, we examined the endophytic bacterial and fungal community structures associated with both the stem and root compartments of Dendrobium huoshanense at different growth years via high-throughput sequencing of 16S rRNA genes and nrDNA fragments of internal transcribed spacer regions. Results indicated that more diverse prokaryotic and fungal operational taxonomic units were detected in roots than in stems, and the alpha diversity of endophytic prokaryotic significantly differed among the 1-, 2-, and 3-year-old roots. The dominant bacterial phyla Proteobacteria Firmicutes, Actinobacteria, Bacteroidetes, and Acidobacteria, and fungal phyla Ascomycota, Basidiomycota, and Ascomycota were detected in the stems and roots with 3 growth years. Moreover, linear discriminant effect size analysis revealed 138 differentially abundant taxonomic clades in the bacterial level, and 197 in the fungal level in six groups. Our results provide evidence for endophytic microbiota communities depending on the tissues and growth years of D. huoshanense. The results from this study should be useful to better understand medicinal plant-microbe interactions.


Assuntos
Dendrobium , Microbiota , Endófitos/genética , Filogenia , Raízes de Plantas , RNA Ribossômico 16S/genética
12.
Zhongguo Zhong Yao Za Zhi ; 44(6): 1145-1150, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989976

RESUMO

In order to explore endophytes diversity and difference in Dendrobium huoshanense,in this paper,the metagenomics method was used to analyze the endophytic bacteria and fungi community of 5 groups include 30 samples in different growth years. The results indicate that 3 540 bacterial OTUs were identified from D. huoshanense,and there are 138 OTUs in 5 groups simultaneously;2 168 fungal OTUs were identified,and 143 OTUs exist in 5 groups simultaneously. The dominate endophytic bacteria community are Sphingomonas sp.,Acinetobacter sp.,Burkholderia sp.,Methylobacterium sp.,Enterococcus sp.,Bacillus sp.,the difference endophytic bacteria community are Oceanobacillusd sp.,Actinomycetospora sp.,Paenibacillus sp.. The dominate endophytic fungi community are Zasmidium sp.,Zymoseptoria sp.,Alternaria sp.,Cladosporium sp.,Fusarium sp.,the difference endophytic fungi community are Cyphellophore sp.,Fusarium sp.. The results of clustering revealed that both the endophytic bacteria and the endophytic fungi,ⅢY2 and ⅢY3 are complete clustered,and ⅡY1 and ⅢY1 are also cluster completely. These enriched the species and resources of endophytic bacteria and fungi in D. huoshanense,and provided a theoretical reference for the reasonable harvest of D. huoshanense.


Assuntos
Ascomicetos , Dendrobium , Fusarium , Bactérias , Endófitos , Fungos , Filogenia
13.
Pharmacogn Mag ; 13(49): 38-45, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28216881

RESUMO

BACKGROUND: The traditional Chinese medicine (TCM) Qianhu and Zihuaqianhu are the dried roots of Peucedanum praeruptorum and Angelica decursiva, respectively. Since the plant sources of Qianhu and Zihuaqianhu are more complex, the chemical compositions of P. praeruptorum and A. decursiva are significantly different, and many adulterants exist because of the differences in traditional understanding and medication habits. Therefore, the rapid and accurate identification methods are required. OBJECTIVE: The aim was to study the feasibility of using DNA barcoding to distinguish between Traditional Chinese medicine Qianhu (Peucedanum praeruptorum), Zihuaqianhu (Angelica decursiva), and common adulterants, based on internal transcribed spacer (ITS) sequences, as well as specific PCR identification between P. praeruptorum and A. decursiva. MATERIALS AND METHODS: The ITS sequences of P. praeruptorum, A. decursiva, and adulterant were studied, and a phylogenetic tree was constructed. Based on the ITS barcode, the specific PCR primer pairs QH-CP19s/QH-CP19a and ZHQH-CP3s/ZHQH-CP3a were designed for P. praeruptorum and A. decursiva, respectively. The amplification conditions were optimized, and specific PCR products were obtained. RESULTS: The results showed that the phylogenetic trees constructed using the BI and MP methods were consistent, and P. praeruptorum and A. decursiva sequence haplotypes formed their own monophyly. The experimental results showed that in PCR products, the target bands appeared in the genuine drug and not in the adulterant, which suggests the high specificity of the two primer pairs. CONCLUSION: The ITS sequence was ideal DNA barcode to identify P. praeruptorum, A. decursiva, and adulterant. The specific PCR is a quick and effective method to distinguish between P. praeruptorum and A. decursiva. SUMMARY: Peucedanum praeruptorum and Angelica decursiva sequence haplotypes formed their own monophyly.The ITS sequence was ideal DNA barcode to identify P. praeruptorum, A. decursiva, and adulterant.Specific PCR is a quick and effective method to distinguish between P. praeruptorum and A. decursiva. Abbreviations used: TCM: The traditional Chinese medicine, P.: Peucedanum, A.: Angelica, ITS: The internal transcribed spacer, PCR: Polymerase chain reaction, NCBI: National Center for Biotechnology Information, NI: Number of individuals, HN: Haplotype number; GAN: Gen Bank accession numbers, L.: Ligusticum, O.: Ostericum, A.: Angelica, P.: Pimpinella, BI: Bayesian inference, MP: Maximum parsimony, AIC: Akaike Information Criterion, MCMC: Markov Chains Monte Carlo, TBR: Tree bisection-reconnection, LPP: Length of PCR product, PRP: PCR reaction procedure, SNP: Single nucleotide polymorphisms, PP: Posterior probability, BS: Bootstrap.Qun Zhao.

14.
Zhonghua Yi Shi Za Zhi ; 45(3): 137-40, 2015 May.
Artigo em Chinês | MEDLINE | ID: mdl-26420522

RESUMO

Shancigu (Rhizome Pleionis) was first recorded in the Ben cao shiyi (Supplements to Chinese Materia Medica). The source of the strain of this medicinal was unclear because of its too simple description in the medical books in the Tang and Song dynasties. Its original plant could be Cremastra appendiculata (D.Don) Makino, Tulipa edulis (Miq.) Baker and so on. The original plant of Shanciguwas Tulipaedulis since the Ming dynasty to the Republican period. The name of "Guangcigu" began to appear in the Republican period because of the changes of its processing method. The original plants evolved into Cremastra appendiculata, Pleione bulbocodioides (Franch.) Rolfe and Pleione yunnanensis Rolfe, with Tulipa edulisas the original plant of Guangcigu (Bulbus of Tulipasedulis). It is found that only the Tulipaedulis is the unequivocal origin with the longest medicinal history through sorting out of the original plants of Shancigu. Hence, it is suggested that Tulipa edulis should be recovered as the original strain of Shancigu.


Assuntos
Manuscritos Médicos como Assunto/história , Materia Medica/história , Medicina Tradicional Chinesa/história , Tulipa/química , China , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Medieval , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA