Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Ethnopharmacol ; 321: 117528, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043754

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY: To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS: The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS: Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION: A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Masculino , Animais , Peixe-Zebra , Cromatografia Líquida , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Propilenoglicóis
2.
Front Cell Infect Microbiol ; 13: 1323674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076462

RESUMO

Background: Alzheimer's disease (AD), characterized by a severe decline in cognitive function, significantly impacts patients' quality of life. Traditional Chinese Medicine (TCM) presents notable advantages in AD treatment, closely linked to its regulation of intestinal flora. Nevertheless, a comprehensive exploration of the precise role of intestinal flora in AD remains lacking. Methods: We induced an AD model through bilateral intracerebroventricular injection of streptozotocin in rats. We divided 36 rats randomly into 6 groups: sham-operated, model, Danggui Shaoyao San (DSS), and 3 DSS decomposed recipes groups. Cognitive abilities were assessed using water maze and open field experiments. Nissl staining examined hippocampal neuron integrity. Western blot analysis determined synaptoprotein expression. Additionally, 16S rDNA high-throughput sequencing analyzed intestinal flora composition. Results: DSS and its decomposed recipe groups demonstrated improved learning and memory in rats (P<0.01). The open field test indicated increased central zone residence time and locomotor activity distance in these groups (P<0.05). Furthermore, the DSS and decomposed recipe groups exhibited reduced hippocampal neuronal damage and increased expression levels of synapsin I (P<0.05) and PSD95 (P<0.01) proteins. Alpha and Beta diversity analyses showed that the intestinal flora species richness and diversity in the DSS and decomposed recipe groups were similar to those in the sham-operated group, signifying a significant restorative effect (P<0.05). Conclusion: The combination of DSS and its decomposed recipes can reduce the abundance of harmful gut microbiota, leading to improvements in cognitive and learning abilities.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Qualidade de Vida , Medicina Tradicional Chinesa
3.
Aging (Albany NY) ; 15(22): 13239-13264, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38006400

RESUMO

The purpose of this study is to investigate the therapeutic effect of Qi Fu Yin (QFY) on Alzheimer's disease (AD) both computationally and experimentally. Network pharmacology analysis and molecular docking were conducted to identify potential targets and signaling pathways involved in QFY treating AD. Streptozotocin-induced AD rat model was used to verify important targets and predicted pathways. The components of QFY were identified using liquid chromatography-tandem mass spectrometry. The results indicate that the potential targets of QFY are highly enriched for anti-inflammatory pathways. Molecular docking analysis revealed stable structures formed between QFY's active compounds, including stigmasterol, ß-sitosterol, and isorhamnetin, and the identified targets. In vivo, QFY improved cognitive memory in AD rats and reduced the mRNA expression levels of toll-like receptor 4 (TLR4), the receptor for advanced glycation end products (AGER), and the inflammatory factors interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the brains of AD rats. Furthermore, QFY effectively reduced nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited NF-κB and microglia activation. In conclusion, QFY can ameliorate neuroinflammation in AD model rats, partly via the inhibition of TLR4 and RAGE/NF-κB pathway and microglia activation, thereby enhancing learning and memory in AD model rats.


Assuntos
Doença de Alzheimer , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Doenças Neuroinflamatórias , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo
4.
Biomed Pharmacother ; 168: 115736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852100

RESUMO

The escalating prevalence of hyperlipidemia has a profound impact on individuals' daily physiological well-being. The traditional Chinese medicine (TCM) prescription Danggui Shaoyao San (DSS) has demonstrated significant clinical efficacy and promising prospects for clinical application. Leveraging network pharmacology and bioinformatics, we hypothesize that DSS can ameliorate lipid metabolic disorders in hyperlipidemia by modulating the PPAR signaling pathway. In this study, we employed a zebrafish model to investigate the impact of DSS on lipid metabolism in hyperlipidemia. Body weight alterations were monitored by pre- and postmodeling weight measurements. Behavioral assessments and quantification of liver biochemical markers were conducted using relevant assay kits. Pathways associated with lipid metabolism were identified through network pharmacology and GEO analysis, while PCR was utilized to assess genes linked to lipid metabolism. Western blotting was employed to analyze protein expression levels, and liver tissue underwent Oil Red O and immunofluorescence staining to evaluate liver lipid deposition. Our findings demonstrate that DSS effectively impedes weight gain and reduces liver lipid accumulation in zebrafish models with elevated lipid levels. The therapeutic effects of DSS on lipid metabolism are mediated through its modulation of the PPAR signaling pathway, resulting in a significant reduction in lipid accumulation within the body and alleviation of certain hyperlipidemia-associated symptoms.


Assuntos
Medicamentos de Ervas Chinesas , Hiperlipidemias , Animais , Humanos , Peixe-Zebra , Receptores Ativados por Proliferador de Peroxissomo , Metabolismo dos Lipídeos , Hiperlipidemias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais , Lipídeos
5.
Zhongguo Zhong Yao Za Zhi ; 48(2): 534-541, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725243

RESUMO

This study investigated the mechanism of Danggui Shaoyao Powder(DSP) against mitophagy in rat model of Alzheimer's disease(AD) induced by streptozotocin(STZ) based on PTEN induced putative kinase 1(PINK1)-Parkin signaling pathway. The AD rat model was established by injecting STZ into the lateral ventricle, and the rats were divided into normal group, model group, DSP low-dose group(12 g·kg~(-1)·d~(-1)), DSP medium-dose group(24 g·kg~(-1)·d~(-1)), and DSP high-dose group(36 g·kg~(-1)·d~(-1)). Morris water maze test was used to detect the learning and memory function of the rats, and transmission electron microscopy and immunofluorescence were employed to detect mitophagy. The protein expression levels of PINK1, Parkin, LC3BⅠ/LC3BⅡ, and p62 were assayed by Western blot. Compared with the normal group, the model group showed a significant decrease in the learning and memory function(P<0.01), reduced protein expression of PINK1 and Parkin(P<0.05), increased protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05), and decreased occurrence of mitophagy(P<0.01). Compared with the model group, the DSP medium-and high-dose groups notably improved the learning and memory ability of AD rats, which mainly manifested as shortened escape latency, leng-thened time in target quadrants and elevated number of crossing the platform(P<0.05 or P<0.01), remarkably activated mitophagy(P<0.05), up-regulated the protein expression of PINK1 and Parkin, and down-regulated the protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05 or P<0.01). These results demonstrated that DSP might promote mitophagy mediated by PINK1-Parkin pathway to remove damaged mitochondria and improve mitochondrial function, thereby exerting a neuroprotective effect.


Assuntos
Doença de Alzheimer , Mitofagia , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Pós , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Front Pharmacol ; 14: 1338804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283834

RESUMO

Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, currently lacks effective clinical therapeutics. Traditional Chinese Medicine (TCM) holds promising potential in AD treatment, exemplified by Danggui Shaoyao San (DSS), a TCM formulation. The precise therapeutic mechanisms of DSS in AD remain to be fully elucidated. This study aims to uncover the therapeutic efficacy and underlying mechanisms of DSS in AD, employing an integrative approach encompassing gut microbiota and metabolomic analyses. Methods: Thirty Sprague-Dawley (SD) rats were allocated into three groups: Blank Control (Con), AD Model (M), and Danggui Shaoyao San (DSS). AD models were established via bilateral intracerebroventricular injections of streptozotocin (STZ). DSS was orally administered at 24 g·kg-1·d-1 (weight of raw herbal materials) for 14 days. Cognitive functions were evaluated using the Morris Water Maze (MWM) test. Pathological alterations were assessed through hematoxylin and eosin (HE) staining. Bloodstream metabolites were characterized, gut microbiota profiled through 16S rDNA sequencing, and cortical metabolomics analyzed. Hippocampal proinflammatory cytokines (IL-1ß, IL-6, TNF-α) were quantified using RT-qPCR, and oxidative stress markers (SOD, CAT, GSH-PX, MDA) in brain tissues were measured with biochemical assays. Results: DSS identified a total of 1,625 bloodstream metabolites, predominantly Benzene derivatives, Carboxylic acids, and Fatty Acyls. DSS significantly improved learning and spatial memory in AD rats and ameliorated cerebral tissue pathology. The formulation enriched the probiotic Ligilactobacillus, modulating metabolites like Ophthalmic acid (OA), Phosphocreatine (PCr), Azacridone A, Inosine, and NAD. DSS regulated Purine and Nicotinate-nicotinamide metabolism, restoring balance in the Candidatus Saccharibacteria-OA interplay and stabilizing gut microbiota-metabolite homeostasis. Additionally, DSS reduced hippocampal IL-1ß, IL-6, TNF-α expression, attenuating the inflammatory state. It elevated antioxidative enzymes (SOD, CAT, GSH-PX) while reducing MDA levels, indicating diminished oxidative stress in AD rat brains. Conclusion: DSS addresses AD pathology through multifaceted mechanisms, encompassing gut microbiome regulation, specific metabolite modulation, and the mitigation of inflammation and oxidative stress within the brain. This holistic intervention through the Microbial-Gut-Brain Axis (MGBA) underscores DSS's potential as an integrative therapeutic agent in combatting AD.

7.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1603-1610, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35347959

RESUMO

This study investigated the mechanism of baicalin on lipopolysaccharide(LPS)/interferon γ(IFN-γ)-induced inflammatory microglia based on the triggering receptor expressed on myeloid cells 2(TREM2)/Toll-like receptor 4(TLR4)/nuclear factor kappaB(NF-κB) pathway. Specifically, LPS and IFN-γ were used to induce inflammation in mouse microglia BV2 cells. Then the normal group, model group, low-dose(5 µmol·L~(-1)) baicalin group, medium-dose(10 µmol·L~(-1)) baicalin group, high-dose(20 µmol·L~(-1)) baicalin group, and minocycline(10 µmol·L~(-1)) group were designed. Cell viability was detected by CCK-8 assay and cell morphology was observed under bright field. The expression of interleukin-1ß(IL-1ß), interleukin-4(IL-4), inducible nitric oxide synthase(iNOS), interleukin-6(IL-6), interleukin-10(IL-10), and arginase-1(Arg-1) mRNA was detected by real-time quantitative PCR, the protein expression of tumor necrosis factor-α(TNF-α), IL-1ß, TREM2, TLR4, inhibitor kappaB-alpha(IκBα), p-IκBα, NF-κB p65 and p-NF-κB p65 by Western blot, and transfer of NF-κB p65 from cytoplasm to nucleus by cellular immunofluorescence. Compared with the normal group, most of the BV2 cells in the model group tended to demonstrate the pro-inflammatory M1 amoeba morphology, and the model group showed significant increase in the mRNA levels of IL-1ß, IL-6, and iNOS, decrease in the mRNA levels of IL-4, IL-10, and Arg-1(P<0.01), rise of the protein expression of TNF-α, IL-1ß, TLR4, p-IκBα, and p-NF-κB p65(P<0.01), reduction in TREM2 protein expression, and increase in the expression of NF-κB p65 in nucleus. Compared with the model group, baicalin groups and minocycline group showed the recovery of BV2 cell morphology, significant decrease in the mRNA levels of IL-1ß, IL-6 and iNOS, increase in the mRNA levels of IL-4, IL-10, and Arg-1(P<0.01), reduction in the protein expression of TNF-α, IL-1ß, TLR4, p-IκBα, and p-NF-κB p65(P<0.05), rise of TREM2 protein expression, and decrease in the expression of NF-κB p65 in nucleus. In summary, these results suggest that baicalin can regulate the imbalance between TREM2 and TLR4 of microglia and inhibit the activation of downstream NF-κB, thus promoting the polarization of microglia from pro-inflammatory phenotype to anti-inflammatory phenotype.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Flavonoides , Inflamação/tratamento farmacológico , Inflamação/genética , Interferon gama , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34621321

RESUMO

Alzheimer's disease (AD) is a serious neurodegenerative disease. While the main pathological characteristic of AD is widely believed to be the accumulation of amyloid-beta (Aß) in neurons around neurofibrillary plaques, the molecular mechanism of pathological changes is not clear. Traditional Chinese medicine offers many treatments for AD. Among these, Danggui Shaoyao San (DSS) is a classic prescription. In this study, an AD model was established by injecting Aß 1-42 into the brains of rats, which were then treated with different concentrations of Danggui Shaoyao San (sham operation; model; and Danggui Shaoyao San high-dose, medium-dose, and low-dose intervention groups). The Morris water maze test was used to assess the learning and memory abilities of the animals in each group. Nissl staining was used to detect neurons. Mitophagy was evaluated by transmission electron microscopy and immunofluorescence colocalization. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression levels of autophagy- and apoptosis-related proteins were measured by western blot. Compared to the model group, the groups of AD rats administered medium and high doses of Danggui Shaoyao San showed significantly increased learning and memory abilities (P < 0.05), as well as significantly increased autophagosomes in the hippocampus. Moreover, the expression of PTEN-induced kinase 1 (PINK1), Parkin, and microtubule-associated protein light chain 3 (LC3-I/LC3-II) was increased, while that of p62 was significantly decreased (P < 0.05). The neuronal apoptosis rate was also significantly decreased, the Bcl-2/Bax ratio was significantly increased, and the cleaved caspase-3 protein expression was significantly decreased (P < 0.05). Therefore, Danggui Shaoyao San inhibited neuronal apoptosis in AD rats via a mechanism that may be related to the activation of the PINK1-Parkin-mediated mitophagy signaling pathway.

9.
Aging (Albany NY) ; 12(23): 23945-23959, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33221745

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease with a high incidence worldwide, and with no medications currently able to prevent the progression of AD. Danggui-Shaoyao-San (DSS) is widely used in traditional Chinese medicine (TCM) and has been proven to be effective for memory and cognitive dysfunction, yet its precise mechanism remains to be delineated. The present study was designed to investigate the genome-wide expression profile of long non-coding RNAs (LncRNAs) and messenger RNAs (mRNAs) in the hippocampus of APP/PS1 mice after DSS treatment by RNA sequencing. A total of 285 differentially expressed LncRNAs and 137 differentially expressed mRNAs were identified (fold-change ≥2.0 and P < 0.05). Partial differentially expressed LncRNAs and mRNAs were selected to verify the RNA sequencing results by quantitative polymerase chain reaction (qPCR). A co-expression network was established to analyze co-expressed LncRNAs and genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to evaluate the biological functions related to the differentially co-expressed LncRNAs, and the results showed that the co-expressed LncRNAs were mainly involved in AD development from distinct origins, such as APP processing, neuron migration, and synaptic transmission. Our research describes the lncRNA and mRNA expression profiles and functional networks involved in the therapeutic effect of DSS in APP/PS1 mice model. The results suggest that the therapeutic effect of DSS on AD involves the expression of LncRNAs. Our findings provide a new perspective for research on the treatment of complex diseases using traditional Chinese medicine prescriptions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Presenilina-1/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
10.
Biomed Pharmacother ; 123: 109664, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31887542

RESUMO

Atherosclerosis (AS) is one of the leading causes of cardiovascular disease and has a high rate of morbidity and mortality. Traditional Chinese Medicine (TCM) supplied many therapies for AS treatment for centuries. Among these treatments, BuYangHuanWu decoction (BYHWD) is a classic prescription. In this study, we analyzed the mechanisms of BYHWD in the treatment of AS by using a network pharmacology method. Our results revealed the mechanisms of BYHWD in treating AS, which is highly related to inflammation and apoptosis pathways, moreover, the genes including IL1ß, TGFB1, TNF, IL6, NFκB1 are proved to be the key pharmacological targets for the treatment of AS. Furthermore, an AS rat model was established and the rats in the treatment group received different amounts of BYHWD. Serum lipid levels (TC/TG/HDL-C/LDL-C) and tissue oxidative stress levels (SOD, GSH-Px, CAT and MDA) were ameliorated in a dose-dependent manner. The morphology of the aortic intima in the BYHWD-treated groups was improved. Real-time PCR and Western blot analysis results indicated that inflammatory cytokines were suppressed and that the NF-κB signaling pathway was blocked by BYHWD. All of this evidence suggested that BYHWD is an ideal prescription for treating AS.


Assuntos
Aterosclerose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Aorta/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Medicina Tradicional Chinesa , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-30050590

RESUMO

In traditional Chinese medicine (TCM), Acori Tatarinowii Rhizoma (ATR) is widely used to treat memory and cognition dysfunction. This study aimed to confirm evidence regarding the potential therapeutic effect of ATR on Alzheimer's disease (AD) using a system network level based in silico approach. Study results showed that the compounds in ATR are highly connected to AD-related signaling pathways, biological processes, and organs. These findings were confirmed by compound-target network, target-organ location network, gene ontology analysis, and KEGG pathway enrichment analysis. Most compounds in ATR have been reported to have antifibrillar amyloid plaques, anti-tau phosphorylation, and anti-inflammatory effects. Our results indicated that compounds in ATR interact with multiple targets in a synergetic way. Furthermore, the mRNA expressions of genes targeted by ATR are elevated significantly in heart, brain, and liver. Our results suggest that the anti-inflammatory and immune system enhancing effects of ATR might contribute to its major therapeutic effects on Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA