Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 149(11): 3161-3168, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38632945

RESUMO

This article presents the development of a distance-based thread analytical device (dTAD) integrated with an ion-imprinted polymer (IIP) for quantitative monitoring of zinc ions (Zn2+) in human urine samples. The IIP was easily chemically modified onto the thread channel using dithizone (DTZ) as a ligand to bind to Zn2+ with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as well as 2,2-azobisisobutyronitrile (AIBN) as cross-linking agents to enhance the selectivity for Zn2+ detection. The imprinted polymer was characterized using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Under optimization, the linear detection range was from 1.0 to 20.0 mg L-1 (R2 = 0.9992) with a limit of detection (LOD) of 1.0 mg L-1. Other potentially interfering metal ions and molecules did not interfere with this approach, leading to high selectivity. Furthermore, our technique exhibits a remarkable recovery ranging from 100.48% to 103.16%, with the highest relative standard deviation (% RSD) of 5.44% for monitoring Zn2+ in human control urine samples, indicating high accuracy and precision. Similarly, there is no significant statistical difference between the results obtained using our method and standards on zinc supplement sample labels. The proposed method offers several advantages in detecting trace Zn2+ for point-of-care (POC) medical diagnostics and environmental sample analysis, such as ease of use, instrument-free readout, and cost efficiency. Overall, our developed dTAD-based IIP method holds potential for simple, affordable, and rapid detection of Zn2+ levels and can be applied to other metal ions' analysis.


Assuntos
Limite de Detecção , Zinco , Humanos , Zinco/química , Zinco/urina , Impressão Molecular/métodos , Polímeros/química , Polímeros Molecularmente Impressos/química
2.
Sci Rep ; 12(1): 1853, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115643

RESUMO

Microneedles offer a convenient transdermal delivery route with potential for long term sustained release of drugs. However current microneedle technologies may not have the mechanical properties for reliable and stable penetration (e.g. hydrogel microneedles). Moreover, it is also challenging to realize microneedle arrays with large size and high flexibility. There is also an inherent upper limit to the amount and kind of drugs that can be loaded in the microneedles. In this paper, we present a new class of polymeric porous microneedles made from biocompatible and photo-curable resin that address these challenges. The microneedles are unique in their ability to load solid drug formulation in concentrated form. We demonstrate the loading and release of solid formulation of anesthetic and non-steroidal anti-inflammatory drugs, namely Lidocaine and Ibuprofen. Paper also demonstrates realization of large area (6 × 20 cm2) flexible and stretchable microneedle patches capable of drug delivery on any body part. Penetration studies were performed in an ex vivo porcine model supplemented through rigorous compression tests to ensure the robustness and rigidity of the microneedles. Detailed release profiles of the microneedle patches were shown in an in vitro skin model. Results show promise for large area transdermal delivery of solid drug formulations using these porous microneedles.


Assuntos
Anestésicos Locais/química , Anti-Inflamatórios não Esteroides/química , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Ibuprofeno/química , Lidocaína/química , Agulhas , Polímeros/química , Administração Cutânea , Anestésicos Locais/administração & dosagem , Anestésicos Locais/metabolismo , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Dureza , Ibuprofeno/administração & dosagem , Ibuprofeno/metabolismo , Lidocaína/administração & dosagem , Lidocaína/metabolismo , Miniaturização , Porosidade , Absorção Cutânea , Sus scrofa , Resistência à Tração
3.
Biomed Microdevices ; 18(1): 6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26780441

RESUMO

Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.


Assuntos
Dispositivos Lab-On-A-Chip , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Semicondutores
4.
Nanotechnology ; 20(22): 225302, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19433877

RESUMO

A simple methodology for integrating single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry is presented. The SWNTs were incorporated onto the CMOS chip as the feedback resistor of a two-stage Miller compensated operational amplifier utilizing dielectrophoretic assembly. The measured electrical properties from the integrated SWNTs yield ohmic behavior with a two-terminal resistance of approximately 37.5 kOmega and the measured small signal ac gain (-2) from the inverting amplifier confirmed successful integration of carbon nanotubes onto the CMOS circuitry. Furthermore, the temperature response of the SWNTs integrated onto CMOS circuitry has been measured and had a thermal coefficient of resistance (TCR) of -0.4% degrees C(-1). This methodology, demonstrated for the integration of SWNTs onto CMOS technology, is versatile, high yield and paves the way for the realization of novel miniature carbon-nanotube-based sensor systems.


Assuntos
Óxido de Alumínio/química , Microtecnologia/instrumentação , Nanotubos de Carbono/química , Fenômenos Eletromagnéticos , Retroalimentação , Microeletrodos , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA