RESUMO
Purpose: The effects of coffee intake on the ratio of stromal and luminal components in the choroid and the underlying mechanism remain unclear. This prospective cross-sectional study aimed to explore how coffee intake affects the choroidal component ratio and circulation. Methods: Forty-nine right eyes of healthy adult volunteers were evaluated as the coffee intake group. Thirty-two right eyes of healthy volunteers served as the control group. The participants consumed 185 mL of coffee or water, respectively, and the systemic hemodynamics, enhanced-depth imaging optical coherence tomographic (EDI-OCT) images, and foveal mean blur rate (MBR), an indicator of blood flow velocity, were recorded at baseline and after coffee or water intake. The EDI-OCT images were binarized using ImageJ software, and subfoveal choroidal thickness (SCT) and whole, luminal, and stromal choroidal areas were calculated. Results: In the coffee intake group, significant decreases in SCT and luminal area peaked at 60 minutes after intake (both P < 0.001), whereas a significant increase in MBR peaked at 30 minutes (P < 0.001). No significant stromal area fluctuations were observed. SCT and luminal area fluctuations exhibited a significant positive correlation (r = 0.978, P < 0.001). Significant negative correlations of luminal area fluctuations with MBR fluctuations were observed by stepwise regression analysis (r = -0.220, P < 0.001). The control group exhibited no significant fluctuations. Conclusions: Coffee-induced choroidal thinning may result mainly from a reduction in the choroidal vessel lumen, and this vessel lumen reduction correlated with an increased choroidal blood flow velocity after coffee intake. These coffee-induced changes in choroidal component ratio and circulation should be considered when evaluating choroids.
Assuntos
Circulação Sanguínea/fisiologia , Corioide/irrigação sanguínea , Café , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Corioide/diagnóstico por imagem , Estudos Transversais , Feminino , Voluntários Saudáveis , Hemodinâmica/fisiologia , Humanos , Pressão Intraocular/fisiologia , Masculino , Estudos Prospectivos , Fluxo Sanguíneo Regional/fisiologia , Tomografia de Coerência Óptica , Adulto JovemRESUMO
Photoreceptor degeneration is the most critical cause of visual impairment in age-related macular degeneration (AMD). In neovascular form of AMD, severe photoreceptor loss develops with subretinal hemorrhage due to choroidal neovascularization (CNV), growth of abnormal blood vessels from choroidal circulation. However, the detailed mechanisms of this process remain elusive. Here we demonstrate that neovascular AMD with subretinal hemorrhage accompanies a significant increase in extracellular ATP, and that extracellular ATP initiates neurodegenerative processes through specific ligation of Purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7; P2X7 receptor). Increased extracellular ATP levels were found in the vitreous samples of AMD patients with subretinal hemorrhage compared to control vitreous samples. Extravascular blood induced a massive release of ATP and photoreceptor cell apoptosis in co-culture with primary retinal cells. Photoreceptor cell apoptosis accompanied mitochondrial apoptotic pathways, namely activation of caspase-9 and translocation of apoptosis-inducing factor (AIF) from mitochondria to nuclei, as well as TUNEL-detectable DNA fragmentation. These hallmarks of photoreceptor cell apoptosis were prevented by brilliant blue G (BBG), a selective P2RX7 antagonist, which is an approved adjuvant in ocular surgery. Finally, in a mouse model of subretinal hemorrhage, photoreceptor cells degenerated through BBG-inhibitable apoptosis, suggesting that ligation of P2RX7 by extracellular ATP may accelerate photoreceptor cell apoptosis in AMD with subretinal hemorrhage. Our results indicate a novel mechanism that could involve neuronal cell death not only in AMD but also in hemorrhagic disorders in the CNS and encourage the potential application of BBG as a neuroprotective therapy.