Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Cancer ; 126(2): 275-286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686779

RESUMO

BACKGROUND: We previously demonstrated the in vitro killing of AML cells by the combination of the lipid-lowering agent bezafibrate (BEZ) and the contraceptive hormone medroxyprogesterone acetate (MPA). A phase II trial demonstrated in vivo safety and efficacy of BEZ and MPA (BaP) in elderly, relapsed/refractory AML and high-risk myelodysplastic syndrome (MDS) patients. However, we observed dose-limiting toxicities in a second trial that attempted to improve outcomes via escalation of BaP doses. Thus we sought to identify a third repurposed drug that potentiates activity of low dose BaP (BaP 0.1 mM). METHODS AND RESULTS: We demonstrate that addition of a commonly used anti-epileptic, valproic acid (VAL) to low dose BaP (BaP 0.1 mM)(VBaP) enhanced killing of AML cell lines/primary AML cells to levels similar to high dose BaP (BaP 0.5 mM). Similarly, addition of VAL to BaP 0.1 mM enhanced reactive oxygen species (ROS), lipid peroxidation and inhibition of de novo fatty acid synthesis. Overexpression of Nrf2 in K562 and KG1a completely inhibited ROS production and rescued cells from VAL/BaP 0.1 mM/VBaP killing. CONCLUSIONS: Given the good safety data of low-dose BaP in elderly/relapsed/refractory AML patients, and that VAL alone is well-tolerated, we propose VBaP as a novel therapeutic combination for AML.


Assuntos
Antioxidantes/metabolismo , Bezafibrato/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Acetato de Medroxiprogesterona/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Valproico/farmacologia , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Contraceptivos Hormonais/farmacologia , Humanos , Hipolipemiantes/farmacologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Dose Máxima Tolerável
2.
Cancer Res ; 75(12): 2530-40, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25943877

RESUMO

The redeployed drug combination of bezafibrate and medroxyprogesterone acetate (designated BaP) has potent in vivo anticancer activity in acute myelogenous leukemia (AML) and endemic Burkitt lymphoma (eBL) patients; however, its mechanism-of-action is unclear. Given that elevated fatty acid biosynthesis is a hallmark of many cancers and that these drugs can affect lipid metabolism, we hypothesized that BaP exerts anticancer effects by disrupting lipogenesis. We applied mass spectrometry-based lipidomics and gene and protein expression measurements of key lipogenic enzymes [acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and stearoyl CoA desaturase 1 (SCD1)] to AML and eBL cell lines treated with BaP. BaP treatment decreased fatty acid and phospholipid biosynthesis from (13)C D-glucose. The proportion of phospholipid species with saturated and monounsaturated acyl chains was also decreased after treatment, whereas those with polyunsaturated chains increased. BaP decreased SCD1 protein levels in each cell line (0.46- to 0.62-fold; P < 0.023) and decreased FASN protein levels across all cell lines (0.87-fold decrease; P = 1.7 × 10(-4)). Changes to ACC1 protein levels were mostly insignificant. Supplementation with the SCD1 enzymatic product, oleate, rescued AML and e-BL cells from BaP cell killing and decreased levels of BaP-induced reactive oxygen species, whereas supplementation with the SCD1 substrate (and FASN product), palmitate, did not rescue cells. In conclusion, these data suggest that the critical anticancer actions of BaP are decreases in SCD1 levels and monounsaturated fatty acid synthesis. To our knowledge, this is the first time that clinically available antileukemic and antilymphoma drugs targeting SCD1 have been reported.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/metabolismo , Bezafibrato/administração & dosagem , Linhagem Celular Tumoral , Células HL-60 , Humanos , Células K562 , Leucemia/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Linfoma/metabolismo , Acetato de Medroxiprogesterona/administração & dosagem , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA