Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 121(12): 1345-1356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940241

RESUMO

Perinatal maternal high-fat diet (HFD) increases susceptibility to obesity and fatty liver diseases in adult offspring, which can be attenuated by the potent hypolipidaemic action of fish oil (FO), an n-3 PUFA source, during adult life. Previously, we described that adolescent HFD offspring showed resistance to FO hypolipidaemic effects, although FO promoted hepatic molecular changes suggestive of reduced lipid accumulation. Here, we investigated whether this FO intervention only during the adolescence period could affect offspring metabolism in adulthood. Then, female Wistar rats received isoenergetic, standard (STD: 9 % fat) or high-fat (HFD: 28·6 % fat) diet before mating, and throughout pregnancy and lactation. After weaning, male offspring received the standard diet; and from 25 to 45 d old they received oral administration of soyabean oil or FO. At 150 d old, serum and hepatic metabolic parameters were evaluated. Maternal HFD adult offspring showed increased body weight, visceral adiposity, hyperleptinaemia and decreased hepatic pSTAT3/STAT3 ratio, suggestive of hepatic leptin resistance. FO intake only during the adolescence period reduced visceral adiposity and serum leptin, regardless of maternal diet. Maternal HFD promoted dyslipidaemia and hepatic TAG accumulation, which was correlated with reduced hepatic carnitine palmitoyl transferase-1a content, suggesting lipid oxidation impairment. FO intake did not change serum lipids; however, it restored hepatic TAG content and hepatic markers of lipid oxidation to STD offspring levels. Therefore, we concluded that FO intake exclusively during adolescence programmed STD offspring and reprogrammed HFD offspring male rats to a healthier metabolic phenotype in adult life, reducing visceral adiposity, serum leptin and hepatic TAG content in offspring adulthood.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Dislipidemias/prevenção & controle , Óleos de Peixe/administração & dosagem , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Dislipidemias/etiologia , Ácidos Graxos Ômega-3/metabolismo , Feminino , Gordura Intra-Abdominal/metabolismo , Leptina/sangue , Fígado/metabolismo , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
2.
Mol Nutr Food Res ; 60(11): 2493-2504, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27342757

RESUMO

SCOPE: Maternal high-fat diet (HFD) promotes obesity and metabolic disturbances in offspring at weaning and adult life. We investigated metabolic consequences of maternal HFD in adolescent rat offspring and the potential benefic effects of fish oil (FO) (n-3 polyunsaturated fatty acid source). METHODS AND RESULTS: Female rats received isocaloric, standard diet (STD: 9% fat) or HFD (28.6%) before mating, and throughout pregnancy and lactation. After weaning, male offspring received standard diet and, from 25th to 45th day, received oral administration of soybean oil (SO) or FO. HFD offspring showed higher body weight and adiposity, which was not attenuated by FO. In STD offspring, FO reduced serum triglyceride and cholesterol, as expected, but not in HFD offspring. Liver of HFD offspring groups showed increased free cholesterol and FO-treated HFD group showed lower expression of Abcg8, suggesting decreased cholesterol biliary excretion. HFD offspring presented higher hepatic expression of lipogenic markers, Srebf1 mRNA and acetyl CoA carboxylase (ACC). Serum n-3 PUFA were decreased in FO-treated HFD compared to FO-treated STD offspring, which may explain the reduced hypolipidemic FO effect. CONCLUSION: Maternal HFD impaired the ability of FO to reduce adiposity and serum lipids in adolescent offspring, suggesting a potential predisposition to future development of metabolic disorders.


Assuntos
Óleos de Peixe/farmacologia , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Adolescente , Animais , Colesterol/sangue , Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Feminino , Óleos de Peixe/administração & dosagem , Humanos , Lactação/efeitos dos fármacos , Fígado/metabolismo , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Triglicerídeos/sangue , Desmame
3.
Nutr Clin Pract ; 27(4): 553-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22661243

RESUMO

To evaluate the influence of ω-3 polyunsaturated fatty acid (ω-3 PUFA) supplementation on body composition, insulin resistance, and lipemia of women with type 2 diabetes, the authors evaluated 41 women (60.64 ± 7.82 years) with high blood pressure and diabetes mellitus in a randomized and single-blind longitudinal intervention study. The women were divided into 3 groups: GA (2.5 g/d fish oil), GB (1.5 g/d fish oil), and GC (control). The capsules with the supplement contained 21.9% of eicosapentaenoic acid and 14.1% of docosapentaenoic acid. Biochemical (glucose, glycated hemoglobin, total and fractional cholesterol, triglycerides, and insulin) and anthropometric (body mass, stature, waist circumference [WC], and body composition) evaluations were performed before and after the 30 days of intervention. Homeostasis model assessment-insulin resistance and the Quantitative Insulin Sensitivity Check Index were used to evaluate the insulin resistance and insulin sensitivity (IS), respectively. GB presented a greater loss of body mass and WC (P < .05), greater frequency of glycemic and total cholesterol reduction, and an increase of high-density lipoprotein cholesterol compared with GA. Thus, a high dose of ω-3 PUFA can reduce IS. A lower dose of ω-3 PUFA positively influenced body composition and lipid metabolism.


Assuntos
Composição Corporal , Suplementos Nutricionais , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Hiperlipidemias/tratamento farmacológico , Resistência à Insulina , Idoso , Glicemia/análise , Índice de Massa Corporal , Colesterol/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Óleos de Peixe/administração & dosagem , Hemoglobinas Glicadas/análise , Humanos , Hiperlipidemias/fisiopatologia , Insulina/sangue , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Método Simples-Cego , Triglicerídeos/sangue , Circunferência da Cintura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA